Exam 3: Solutions

Problem 1 (40 pts.) Solve the initial-boundary value problem for the wave equation in a semicircle (in polar coordinates r, θ)

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u \quad(0<r<1, \quad 0<\theta<\pi) \\
& u(r, \theta, 0)=f(r) \sin 3 \theta, \quad \frac{\partial u}{\partial t}(r, \theta, 0)=0 \quad(0<r<1, \quad 0<\theta<\pi), \\
& u=0 \text { on the entire boundary. }
\end{aligned}
$$

Solution:

$$
u(r, \theta, t)=\sum_{n=1}^{\infty} A_{n} J_{3}\left(j_{3, n} r\right) \sin 3 \theta \cos \left(j_{3, n} t\right),
$$

where $j_{3, n}$ is the nth positive zero of the Bessel function J_{3} and

$$
A_{n}=\frac{\int_{0}^{1} f(r) J_{3}\left(j_{3, n} r\right) r d r}{\int_{0}^{1}\left|J_{3}\left(j_{3, n} r\right)\right|^{2} r d r}
$$

Wave equation in polar coordinates:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

We search for the solution of the problem as a superposition of normal modes, that is, solutions $u(r, \theta, t)=F(r) h(\theta) g(t)$ with separated variables of the wave equation satisfying the boundary condition. Substituting $u(r, \theta, t)=F(r) h(\theta) g(t)$ into the wave equation, we obtain

$$
\begin{gathered}
F(r) h(\theta) g^{\prime \prime}(t)=F^{\prime \prime}(r) h(\theta) g(t)+\frac{1}{r} F^{\prime}(r) h(\theta) g(t)+\frac{1}{r^{2}} F(r) h^{\prime \prime}(\theta) g(t), \\
\frac{g^{\prime \prime}(t)}{g(t)}=\frac{F^{\prime \prime}(r)}{F(r)}+\frac{1}{r} \frac{F^{\prime}(r)}{F(r)}+\frac{1}{r^{2}} \frac{h^{\prime \prime}(\theta)}{h(\theta)} .
\end{gathered}
$$

Since the left-hand side does not depend on r and θ while the right-hand side does not depend on t, it follows that

$$
\frac{g^{\prime \prime}(t)}{g(t)}=\frac{F^{\prime \prime}(r)}{F(r)}+\frac{1}{r} \frac{F^{\prime}(r)}{F(r)}+\frac{1}{r^{2}} \frac{h^{\prime \prime}(\theta)}{h(\theta)}=-\lambda,
$$

where λ is a constant. Then

$$
r^{2} \frac{F^{\prime \prime}(r)}{F(r)}+r \frac{F^{\prime}(r)}{F(r)}+\lambda r^{2}=-\frac{h^{\prime \prime}(\theta)}{h(\theta)} .
$$

The left-hand side of the latter equation does not depend on θ while its right-hand side does not depend on r. Therefore

$$
r^{2} \frac{F^{\prime \prime}(r)}{F(r)}+r \frac{F^{\prime}(r)}{F(r)}+\lambda r^{2}=-\frac{h^{\prime \prime}(\theta)}{h(\theta)}=\mu,
$$

where μ is a constant. Now all variables are separated:

$$
r^{2} F^{\prime \prime}(r)+r F^{\prime}(r)+\left(\lambda r^{2}-\mu\right) F(r)=0, \quad h^{\prime \prime}=-\mu h, \quad g^{\prime \prime}=-\lambda g
$$

Conversely, if functions F, h, and g are solutions of the above ODEs for the same values of λ and μ, then $u(r, \theta, t)=F(r) h(\theta) g(t)$ is a solution of the wave equation in polar coordinates.

The condition $u=0$ on the entire boundary is equivalent to the following four conditions:

$$
u(r, 0, t)=u(r, \pi, t)=0, \quad u(0, \theta, t)=u(1, \theta, t)=0
$$

Substituting $u(r, \theta, t)=F(r) h(\theta) g(t)$ into these, we get

$$
F(r) h(0) g(t)=F(r) h(\pi) g(t)=0, \quad F(0) h(\theta) g(t)=F(1) h(\theta) g(t)=0
$$

It is no loss to assume that neither F nor h nor g is identically zero. Then the boundary conditions are satisfied if and only if $F(0)=F(1)=0, h(0)=h(\pi)=0$.

To determine h, we have an eigenvalue problem

$$
h^{\prime \prime}=-\mu h, \quad h(0)=h(\pi)=0
$$

This problem has eigenvalues $\mu_{m}=m^{2}, m=1,2, \ldots$. All eigenvalues are simple. The corresponding eigenfunctions are $h_{m}(\theta)=\sin m \theta$.

To determine F, we have another eigenvalue problem

$$
r^{2} F^{\prime \prime}(r)+r F^{\prime}(r)+\left(\lambda r^{2}-\mu\right) F(r)=0, \quad F(0)=F(1)=0
$$

We may assume that μ is one of the eigenvalues of the former eigenvalue problem, that is, $\mu=m^{2}$, where m is a positive integer. Also, we know that the latter eigenvalue problem is going to have only positive eigenvalues so we may assume that $\lambda>0$.

Introduce a new coordinate $z=\sqrt{\lambda} r$. As a function of z, F satisfies Bessel's differential equation of order m :

$$
z^{2} \frac{d^{2} F}{d z^{2}}+z \frac{d F}{d z}+\left(z^{2}-m^{2}\right) F=0
$$

Hence $F(z)=c_{1} J_{m}(z)+c_{2} Y_{m}(z)$, where c_{1}, c_{2} are constants. Returning to the coordinate r, we obtain that $F(r)=c_{1} J_{m}(\sqrt{\lambda} r)+c_{2} Y_{m}(\sqrt{\lambda} r)$. The boundary condition $F(0)=0$ holds if $c_{2}=0$. Then the boundary condition $F(1)=0$ holds if $c_{1} J_{m}(\sqrt{\lambda})=0$. A nonzero solution exists if $J_{m}(\sqrt{\lambda})=0$. Therefore for any m we obtain a series of eigenvalues $\lambda_{m, 1}, \lambda_{m, 2}, \ldots$, where $\sqrt{\lambda_{m, n}}$ is the nth positive zero of the Bessel function J_{m}. All eigenvalues are simple. The corresponding eigenfunctions are $F_{m, n}(r)=J_{m}\left(\sqrt{\lambda_{m, n}} r\right)$.

The function g is to be determined from the equation $g^{\prime \prime}=-\lambda g$. We may assume that λ is one of the above eigenvalues so that $\lambda>0$. Then $g(t)=c_{1} \cos (\sqrt{\lambda} t)+c_{2} \sin (\sqrt{\lambda} t)$, where c_{1}, c_{2} are constants.

Thus for any positive integers m and n we have the following normal modes:

$$
\begin{aligned}
& u_{m, n}(r, \theta, t)=J_{m}\left(\sqrt{\lambda_{m, n}} r\right) \sin m \theta \cos \left(\sqrt{\lambda_{m, n}} t\right) \\
& \tilde{u}_{m, n}(r, \theta, t)=J_{m}\left(\sqrt{\lambda_{m, n}} r\right) \sin m \theta \sin \left(\sqrt{\lambda_{m, n}} t\right)
\end{aligned}
$$

Their superposition is a double series

$$
u(r, \theta, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\sqrt{\lambda_{m, n}} r\right) \sin m \theta\left(a_{m, n} \cos \left(\sqrt{\lambda_{m, n}} t\right)+b_{m, n} \sin \left(\sqrt{\lambda_{m, n}} t\right)\right)
$$

where $a_{m, n}$ and $b_{m, n}$ are constants. The initial condition $\frac{\partial u}{\partial t}(r, \theta, 0)=0$ is satisfied if all $b_{m, n}$ are zero. The initial condition $u(r, \theta, 0)=f(r) \sin 3 \theta$ is satisfied if $a_{m, n}=0$ for $m \neq 3$ and

$$
\sum_{n=1}^{\infty} a_{3, n} J_{3}\left(\sqrt{\lambda_{3, n}} r\right)
$$

is the Fourier-Bessel series of the function $f(r)$ on the interval $(0,1)$. That is, if

$$
a_{3, n}=\frac{\int_{0}^{1} f(r) J_{3}\left(\sqrt{\lambda_{3, n}} r\right) r d r}{\int_{0}^{1}\left|J_{3}\left(\sqrt{\lambda_{3, n}} r\right)\right|^{2} r d r}
$$

Problem 2 (25 pts.) It is known that

$$
\int_{-\infty}^{\infty} e^{-\alpha x^{2}} e^{i \beta x} d x=\sqrt{\frac{\pi}{\alpha}} e^{-\beta^{2} /(4 \alpha)}, \quad \alpha>0, \beta \in \mathbb{R} .
$$

Let $f(x)=e^{-x^{2} / 2}, x \in \mathbb{R}$.
(i) Find the Fourier transform of f.
(ii) Find the inverse Fourier transform of f.
(iii) Find an expression for the convolution $f * f$ that does not involve integrals.

Solution: (i) $\mathcal{F}[f]=\frac{1}{\sqrt{2 \pi}} f$; (ii) $\mathcal{F}^{-1}[f]=\sqrt{2 \pi} f ;$ (iii) $(f * f)(x)=\sqrt{\pi} e^{-x^{2} / 4}$.
For any $\omega \in \mathbb{R}$ we have that

$$
\begin{aligned}
\mathcal{F}[f](\omega)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-x^{2} / 2} e^{-i \omega x} d x=\frac{1}{2 \pi} \sqrt{2 \pi} e^{-\omega^{2} / 2}=\frac{1}{\sqrt{2 \pi}} e^{-\omega^{2} / 2}=\frac{1}{\sqrt{2 \pi}} f(\omega) \\
& \mathcal{F}^{-1}[f](\omega)=\int_{-\infty}^{\infty} e^{-x^{2} / 2} e^{i \omega x} d x=\sqrt{2 \pi} e^{-\omega^{2} / 2}=\sqrt{2 \pi} f(\omega)
\end{aligned}
$$

By the convolution theorem, $\mathcal{F}[f * f]=2 \pi(\mathcal{F}[f])^{2}=f^{2}$. Therefore

$$
(f * f)(x)=\mathcal{F}^{-1}\left[f^{2}\right](x)=\int_{-\infty}^{\infty}(f(\omega))^{2} e^{i \omega x} d \omega=\int_{-\infty}^{\infty} e^{-\omega^{2}} e^{i \omega x} d \omega=\sqrt{\pi} e^{-x^{2} / 4}
$$

Problem 3 (35 pts.) \quad Solve the initial value problem for the heat equation on the infinite interval

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad(-\infty<x<\infty, \quad t>0) \\
& u(x, 0)=e^{-x^{2} / 2}
\end{aligned}
$$

You cannot use Green's function unless you derive it.
Extra credit can be obtained when the solution will contain no integrals.

Solution: $\quad u(x, t)=\frac{1}{\sqrt{2 t+1}} e^{-x^{2} /(4 t+2)}$.
The function $f(x)=e^{-x^{2} / 2}$ is smooth and rapidly decaying as $x \rightarrow \infty$. This suggests that the solution $u(x, t)$ will have the same properties.

Apply the Fourier transform (relative to x) to both sides of the equation:

$$
\mathcal{F}\left[\frac{\partial u}{\partial t}\right]=\mathcal{F}\left[\frac{\partial^{2} u}{\partial x^{2}}\right] .
$$

Let U denote the Fourier transform of the solution u,

$$
U(\omega, t)=\mathcal{F}[u(\cdot, t)](\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(x, t) e^{-i \omega x} d x
$$

Then

$$
\mathcal{F}\left[\frac{\partial u}{\partial t}\right]=\frac{\partial U}{\partial t}, \quad \mathcal{F}\left[\frac{\partial^{2} u}{\partial x^{2}}\right]=(i \omega)^{2} U(\omega, t)=-\omega^{2} U(\omega, t) .
$$

Therefore

$$
\frac{\partial U}{\partial t}=-\omega^{2} U(\omega, t) .
$$

For any $\omega \in \mathbb{R}$ this is an ordinary differential equation in variable t. The general solution is $U(\omega, t)=$ $c e^{-\omega^{2} t}$, where c is a constant. Note that c depends on $\omega, c=c(\omega)$.

The initial condition $u(x, 0)=f(x)=e^{-x^{2} / 2}$ implies that $U(\omega, 0)=\hat{f}(\omega)$. Hence $c(\omega)=\hat{f}(\omega)$ for all $\omega \in \mathbb{R}$ and $U(\omega, t)=\hat{f}(\omega) e^{-\omega^{2} t}$. As shown in the solution of Problem 2, $\hat{f}(\omega)=(2 \pi)^{-1 / 2} e^{-\omega^{2} / 2}$. Then

$$
U(\omega, t)=\frac{1}{\sqrt{2 \pi}} e^{-\omega^{2} / 2} e^{-\omega^{2} t}=\frac{1}{\sqrt{2 \pi}} e^{-(t+1 / 2) \omega^{2}} .
$$

It remains to apply the inverse Fourier transform:

$$
\begin{gathered}
u(x, t)=\mathcal{F}^{-1}[U(\cdot, t)](x)=\int_{-\infty}^{\infty} U(\omega, t) e^{i \omega x} d \omega=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(t+1 / 2) \omega^{2}} e^{i \omega x} d \omega \\
=\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{\pi}{t+1 / 2}} e^{-x^{2} /(4 t+2)}=\frac{1}{\sqrt{2 t+1}} e^{-x^{2} /(4 t+2)} .
\end{gathered}
$$

Bonus Problem 4 ($\mathbf{3 5}$ pts.) Solve the initial-boundary value problem for the heat equation on the interval $[0,1]$

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<1, \quad t>0) \\
& u(x, 0)=-\frac{1}{3} x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+2 \sin \pi x \quad(0<x<1), \\
& u(0, t)=t, \quad u(1, t)=0
\end{aligned}
$$

Solution: $\quad u(x, t)=t(1-x)-\frac{1}{3} x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+2 e^{-\pi^{2} t} \sin \pi x$.
The boundary conditions are not homogeneous. The function $u_{0}(x, t)=t(1-x)$ satisfies them. Let $u(x, t)$ be the solution of the problem. Then the function $w(x, t)=u(x, t)-u_{0}(x, t)$ satisfies homogeneous boundary conditions $w(0, t)=w(1, t)=0$. Since $u=w+u_{0}$, we obtain

$$
\frac{\partial}{\partial t}\left(w+u_{0}\right)=\frac{\partial^{2}}{\partial x^{2}}\left(w+u_{0}\right),
$$

$$
\frac{\partial w}{\partial t}-\frac{\partial^{2} w}{\partial x^{2}}=-\frac{\partial u_{0}}{\partial t}+\frac{\partial^{2} u_{0}}{\partial x^{2}}=x-1 .
$$

Also, $w(x, 0)=u(x, 0)-u_{0}(x, 0)=u(x, 0)$. Therefore w is the solution of the following initial-boundary value problem:

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=\frac{\partial^{2} w}{\partial x^{2}}+x-1 \quad(0<x<1, \quad t>0) \\
& w(x, 0)=-\frac{1}{3} x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+2 \sin \pi x \quad(0<x<1) \\
& w(0, t)=w(1, t)=0
\end{aligned}
$$

The solution can be represented in the form $w(x, t)=w_{0}(x)+v(x, t)$, where w_{0} is the steady-state solution of the above equation that satisfies the boundary conditions:

$$
\frac{d^{2} w_{0}}{d x^{2}}+x-1=0, \quad w_{0}(0)=w_{0}(1)=0,
$$

while v is the solution of an initial-boundary value problem for the homogeneous heat equation:

$$
\begin{aligned}
& \frac{\partial v}{\partial t}=\frac{\partial^{2} v}{\partial x^{2}} \quad(0<x<1, \quad t>0) \\
& v(x, 0)=-w_{0}(x)-\frac{1}{3} x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+2 \sin \pi x \quad(0<x<1), \\
& v(0, t)=v(1, t)=0
\end{aligned}
$$

First we have to find w_{0}. Since $w_{0}^{\prime \prime}(x)=1-x$, it follows that $w_{0}(x)=\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+c_{1} x+c_{2}$, where c_{1}, c_{2} are constants. The boundary conditions $w_{0}(0)=w_{0}(1)=0$ hold when $c_{1}=-\frac{1}{3}, c_{2}=0$. Thus

$$
w_{0}(x)=-\frac{1}{3} x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}
$$

Now we know the initial condition that v should satisfy: $v(x, 0)=2 \sin \pi x$. Observe that $\phi(x)=\sin \pi x$ is an eigenfunction of the problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(1)=0 .
$$

The corresponding eigenvalue is $\lambda=\pi^{2}$. Hence v is a solution with separated variables. It is easy to obtain that $v(x, t)=2 e^{-\pi^{2} t} \sin \pi x$.

Finally, $u(x, t)=u_{0}(x, t)+w_{0}(x)+v(x, t)=t(1-x)-\frac{1}{3} x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+2 e^{-\pi^{2} t} \sin \pi x$.

