
Math 412-501 November 17, 2006

Exam 3: Solutions

Problem 1 (40 pts.) Solve the initial-boundary value problem for the wave equation in
a semicircle (in polar coordinates r, θ)

∂2u

∂t2
= ∇2u (0 < r < 1, 0 < θ < π),

u(r, θ, 0) = f(r) sin 3θ,
∂u

∂t
(r, θ, 0) = 0 (0 < r < 1, 0 < θ < π),

u = 0 on the entire boundary.

Solution:

u(r, θ, t) =
∞∑

n=1

An J3(j3,nr) sin 3θ cos(j3,nt),

where j3,n is the nth positive zero of the Bessel function J3 and

An =

∫ 1

0

f(r) J3(j3,nr) r dr∫ 1

0

|J3(j3,nr)|2 r dr

.

Wave equation in polar coordinates:

∂2u

∂t2
=

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
.

We search for the solution of the problem as a superposition of normal modes, that is, solutions
u(r, θ, t) = F (r)h(θ)g(t) with separated variables of the wave equation satisfying the boundary condi-
tion. Substituting u(r, θ, t) = F (r)h(θ)g(t) into the wave equation, we obtain

F (r)h(θ)g′′(t) = F ′′(r)h(θ)g(t) +
1
r

F ′(r)h(θ)g(t) +
1
r2

F (r)h′′(θ)g(t),

g′′(t)
g(t)

=
F ′′(r)
F (r)

+
1
r

F ′(r)
F (r)

+
1
r2

h′′(θ)
h(θ)

.

Since the left-hand side does not depend on r and θ while the right-hand side does not depend on t,
it follows that

g′′(t)
g(t)

=
F ′′(r)
F (r)

+
1
r

F ′(r)
F (r)

+
1
r2

h′′(θ)
h(θ)

= −λ,

where λ is a constant. Then

r2 F ′′(r)
F (r)

+ r
F ′(r)
F (r)

+ λr2 = −h′′(θ)
h(θ)

.

The left-hand side of the latter equation does not depend on θ while its right-hand side does not
depend on r. Therefore

r2 F ′′(r)
F (r)

+ r
F ′(r)
F (r)

+ λr2 = −h′′(θ)
h(θ)

= µ,
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where µ is a constant. Now all variables are separated:

r2F ′′(r) + rF ′(r) + (λr2 − µ)F (r) = 0, h′′ = −µh, g′′ = −λg.

Conversely, if functions F , h, and g are solutions of the above ODEs for the same values of λ and µ,
then u(r, θ, t) = F (r)h(θ)g(t) is a solution of the wave equation in polar coordinates.

The condition u = 0 on the entire boundary is equivalent to the following four conditions:

u(r, 0, t) = u(r, π, t) = 0, u(0, θ, t) = u(1, θ, t) = 0.

Substituting u(r, θ, t) = F (r)h(θ)g(t) into these, we get

F (r)h(0)g(t) = F (r)h(π)g(t) = 0, F (0)h(θ)g(t) = F (1)h(θ)g(t) = 0.

It is no loss to assume that neither F nor h nor g is identically zero. Then the boundary conditions
are satisfied if and only if F (0) = F (1) = 0, h(0) = h(π) = 0.

To determine h, we have an eigenvalue problem

h′′ = −µh, h(0) = h(π) = 0.

This problem has eigenvalues µm = m2, m = 1, 2, . . .. All eigenvalues are simple. The corresponding
eigenfunctions are hm(θ) = sin mθ.

To determine F , we have another eigenvalue problem

r2F ′′(r) + rF ′(r) + (λr2 − µ)F (r) = 0, F (0) = F (1) = 0.

We may assume that µ is one of the eigenvalues of the former eigenvalue problem, that is, µ = m2,
where m is a positive integer. Also, we know that the latter eigenvalue problem is going to have only
positive eigenvalues so we may assume that λ > 0.

Introduce a new coordinate z =
√

λ r. As a function of z, F satisfies Bessel’s differential equation
of order m:

z2 d2F

dz2
+ z

dF

dz
+ (z2 −m2)F = 0.

Hence F (z) = c1Jm(z)+c2Ym(z), where c1, c2 are constants. Returning to the coordinate r, we obtain
that F (r) = c1Jm(

√
λ r) + c2Ym(

√
λ r). The boundary condition F (0) = 0 holds if c2 = 0. Then

the boundary condition F (1) = 0 holds if c1Jm(
√

λ) = 0. A nonzero solution exists if Jm(
√

λ) = 0.
Therefore for any m we obtain a series of eigenvalues λm,1, λm,2, . . ., where

√
λm,n is the nth positive

zero of the Bessel function Jm. All eigenvalues are simple. The corresponding eigenfunctions are
Fm,n(r) = Jm(

√
λm,n r).

The function g is to be determined from the equation g′′ = −λg. We may assume that λ is one of
the above eigenvalues so that λ > 0. Then g(t) = c1 cos(

√
λ t)+c2 sin(

√
λ t), where c1, c2 are constants.

Thus for any positive integers m and n we have the following normal modes:

um,n(r, θ, t) = Jm(
√

λm,n r) sinmθ cos(
√

λm,n t),

ũm,n(r, θ, t) = Jm(
√

λm,n r) sinmθ sin(
√

λm,n t).

Their superposition is a double series

u(r, θ, t) =
∞∑

m=1

∞∑
n=1

Jm(
√

λm,n r) sin mθ
(
am,n cos(

√
λm,n t) + bm,n sin(

√
λm,n t)

)
,

2



where am,n and bm,n are constants. The initial condition ∂u
∂t (r, θ, 0) = 0 is satisfied if all bm,n are zero.

The initial condition u(r, θ, 0) = f(r) sin 3θ is satisfied if am,n = 0 for m 6= 3 and

∞∑
n=1

a3,n J3(
√

λ3,n r)

is the Fourier-Bessel series of the function f(r) on the interval (0, 1). That is, if

a3,n =

∫ 1

0
f(r) J3(

√
λ3,n r) r dr∫ 1

0
|J3(

√
λ3,n r)|2 r dr

.

Problem 2 (25 pts.) It is known that∫ ∞

−∞
e−αx2

eiβx dx =

√
π

α
e−β2/(4α), α > 0, β ∈ R.

Let f(x) = e−x2/2, x ∈ R.

(i) Find the Fourier transform of f .
(ii) Find the inverse Fourier transform of f .
(iii) Find an expression for the convolution f ∗ f that does not involve integrals.

Solution: (i) F [f ] =
1√
2π

f ; (ii) F−1[f ] =
√

2π f ; (iii) (f ∗ f)(x) =
√

π e−x2/4.

For any ω ∈ R we have that

F [f ](ω) =
1
2π

∫ ∞

−∞
e−x2/2 e−iωx dx =

1
2π

√
2π e−ω2/2 =

1√
2π

e−ω2/2 =
1√
2π

f(ω),

F−1[f ](ω) =
∫ ∞

−∞
e−x2/2 eiωx dx =

√
2π e−ω2/2 =

√
2π f(ω).

By the convolution theorem, F [f ∗ f ] = 2π (F [f ])2 = f2. Therefore

(f ∗ f)(x) = F−1[f2](x) =
∫ ∞

−∞
(f(ω))2 eiωx dω =

∫ ∞

−∞
e−ω2

eiωx dω =
√

π e−x2/4.

Problem 3 (35 pts.) Solve the initial value problem for the heat equation on the infinite
interval

∂u

∂t
=

∂2u

∂x2
(−∞ < x < ∞, t > 0),

u(x, 0) = e−x2/2.

You cannot use Green’s function unless you derive it.
Extra credit can be obtained when the solution will contain no integrals.
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Solution: u(x, t) =
1√

2t + 1
e−x2/(4t+2).

The function f(x) = e−x2/2 is smooth and rapidly decaying as x → ∞. This suggests that the
solution u(x, t) will have the same properties.

Apply the Fourier transform (relative to x) to both sides of the equation:

F
[
∂u

∂t

]
= F

[
∂2u

∂x2

]
.

Let U denote the Fourier transform of the solution u,

U(ω, t) = F [u(·, t)](ω) =
1
2π

∫ ∞

−∞
u(x, t)e−iωx dx.

Then

F
[
∂u

∂t

]
=

∂U

∂t
, F

[
∂2u

∂x2

]
= (iω)2U(ω, t) = −ω2U(ω, t).

Therefore
∂U

∂t
= −ω2U(ω, t).

For any ω ∈ R this is an ordinary differential equation in variable t. The general solution is U(ω, t) =
ce−ω2t, where c is a constant. Note that c depends on ω, c = c(ω).

The initial condition u(x, 0) = f(x) = e−x2/2 implies that U(ω, 0) = f̂(ω). Hence c(ω) = f̂(ω) for
all ω ∈ R and U(ω, t) = f̂(ω)e−ω2t. As shown in the solution of Problem 2, f̂(ω) = (2π)−1/2e−ω2/2.
Then

U(ω, t) =
1√
2π

e−ω2/2 e−ω2t =
1√
2π

e−(t+1/2)ω2
.

It remains to apply the inverse Fourier transform:

u(x, t) = F−1[U(·, t)](x) =
∫ ∞

−∞
U(ω, t)eiωx dω =

1√
2π

∫ ∞

−∞
e−(t+1/2)ω2

eiωx dω

=
1√
2π

√
π

t + 1/2
e−x2/(4t+2) =

1√
2t + 1

e−x2/(4t+2).

Bonus Problem 4 (35 pts.) Solve the initial-boundary value problem for the heat
equation on the interval [0, 1]

∂u

∂t
=

∂2u

∂x2
(0 < x < 1, t > 0),

u(x, 0) = −1

3
x +

1

2
x2 − 1

6
x3 + 2 sin πx (0 < x < 1),

u(0, t) = t, u(1, t) = 0.

Solution: u(x, t) = t(1− x)− 1

3
x +

1

2
x2 − 1

6
x3 + 2e−π2t sin πx.

The boundary conditions are not homogeneous. The function u0(x, t) = t(1 − x) satisfies them.
Let u(x, t) be the solution of the problem. Then the function w(x, t) = u(x, t) − u0(x, t) satisfies
homogeneous boundary conditions w(0, t) = w(1, t) = 0. Since u = w + u0, we obtain

∂

∂t
(w + u0) =

∂2

∂x2
(w + u0),
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∂w

∂t
− ∂2w

∂x2
= −∂u0

∂t
+

∂2u0

∂x2
= x− 1.

Also, w(x, 0) = u(x, 0)−u0(x, 0) = u(x, 0). Therefore w is the solution of the following initial-boundary
value problem:

∂w

∂t
=

∂2w

∂x2
+ x− 1 (0 < x < 1, t > 0),

w(x, 0) = −1
3
x +

1
2
x2 − 1

6
x3 + 2 sinπx (0 < x < 1),

w(0, t) = w(1, t) = 0.

The solution can be represented in the form w(x, t) = w0(x) + v(x, t), where w0 is the steady-state
solution of the above equation that satisfies the boundary conditions:

d2w0

dx2
+ x− 1 = 0, w0(0) = w0(1) = 0,

while v is the solution of an initial-boundary value problem for the homogeneous heat equation:

∂v

∂t
=

∂2v

∂x2
(0 < x < 1, t > 0),

v(x, 0) = −w0(x)− 1
3
x +

1
2
x2 − 1

6
x3 + 2 sinπx (0 < x < 1),

v(0, t) = v(1, t) = 0.

First we have to find w0. Since w′′0(x) = 1−x, it follows that w0(x) = 1
2x2− 1

6x3 + c1x+ c2, where
c1, c2 are constants. The boundary conditions w0(0) = w0(1) = 0 hold when c1 = −1

3 , c2 = 0. Thus

w0(x) = −1
3
x +

1
2
x2 − 1

6
x3.

Now we know the initial condition that v should satisfy: v(x, 0) = 2 sinπx. Observe that φ(x) = sin πx
is an eigenfunction of the problem

φ′′ = −λφ, φ(0) = φ(1) = 0.

The corresponding eigenvalue is λ = π2. Hence v is a solution with separated variables. It is easy to
obtain that v(x, t) = 2e−π2t sinπx.

Finally, u(x, t) = u0(x, t) + w0(x) + v(x, t) = t(1− x)− 1
3x + 1

2x2 − 1
6x3 + 2e−π2t sinπx.
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