Math 412-501 November 17, 2006
Exam 3: Solutions

Problem 1 (40 pts.) Solve the initial-boundary value problem for the wave equation in
a semicircle (in polar coordinates r, 6)
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ot?

u(r,0,0) = f(r)sin 30,

=V (0<r<l1, 0<f<n),

u
ot

© =0 on the entire boundary.

(r0,00=0 (0<r<1, 0<@<m),

Solution:

u(r,6,t) = Z Ay, J3(jsar) sin 30 cos(jznt),

n=1

where js,, is the nth positive zero of the Bessel function J3 and

1
/f(r)Jg(jgmr)rdr
A, =29 : .
/\Jg(jg,nr)\Qrdr
0

Wave equation in polar coordinates:

32u_82u+18u+ 1 0%u
otz or2  r or 2 062
We search for the solution of the problem as a superposition of normal modes, that is, solutions

u(r,0,t) = F(r)h(0)g(t) with separated variables of the wave equation satisfying the boundary condi-
tion. Substituting u(r,0,t) = F(r)h(0)g(t) into the wave equation, we obtain

Fr)(©)g" (1) = F"()R(O)g(t) + - F'(r)h(B)g(0) + 5 FrI' (0)g(r).
¢'(t) _F'0)  1F@) 1)
o)~ F@) T FE) T he)

Since the left-hand side does not depend on r and € while the right-hand side does not depend on t,
it follows that

g”(t) _ F"(T) lF/(r) i h”(@) L
gt)  F(r) —r F(r) > h(0) ’

where ) is a constant. Then
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The left-hand side of the latter equation does not depend on 6 while its right-hand side does not

depend on r. Therefore
F’(r) F'(r) n"(9)
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where u is a constant. Now all variables are separated:
PF () +rF (r) + (W = p)F(r) =0, B'=-ph,  g"=-)g.

Conversely, if functions F', h, and g are solutions of the above ODEs for the same values of A and p,
then u(r,0,t) = F(r)h(0)g(t) is a solution of the wave equation in polar coordinates.
The condition © = 0 on the entire boundary is equivalent to the following four conditions:

u(r,0,t) = u(r,m,t) =0, u(0,60,t) = u(1,0,t) =

Substituting u(r,0,t) = F(r)h(0)g(t) into these, we get

It is no loss to assume that neither F' nor h nor g is identically zero. Then the boundary conditions
are satisfied if and only if F'(0) = F(1) =0, h(0) = h(7) = 0.
To determine h, we have an eigenvalue problem

W' = —ph,  h(0) = h(r) = 0.

This problem has eigenvalues ji,, = m?, m = 1,2,.... All eigenvalues are simple. The corresponding
eigenfunctions are hy,(0) = sinm#.
To determine F', we have another eigenvalue problem

r2F"(r) + 7F'(r) + (\r* — u)F(r) = 0, F(0)=F(1)=0.

We may assume that u is one of the eigenvalues of the former eigenvalue problem, that is, u = m?,
where m is a positive integer. Also, we know that the latter eigenvalue problem is going to have only
positive eigenvalues so we may assume that A > 0.

Introduce a new coordinate z = v Ar. As a function of z, F satisfies Bessel’s differential equation
of order m: )

Ccll—}; +zil£ + (22 —-mHF =0.

Hence F(z) = c1Jm(2) +c2Ym(2), where ¢;, ¢ are constants. Returning to the coordinate r, we obtain
that F(r) = c1Jm(VAT) + c2Yn(VA7). The boundary condition F(0) = 0 holds if o = 0. Then
the boundary condition F(1) = 0 holds if ¢;J,,(vA) = 0. A nonzero solution exists if J,,(v/A) = 0.
Therefore for any m we obtain a series of eigenvalues Ay, 1, A 2, . . ., where /Ay, 5, is the nth positive
zero of the Bessel function J,,. All eigenvalues are simple. The corresponding eigenfunctions are
Fon(r) = Jdn(y/AmaT)-

The function g is to be determined from the equation g’ = —\g. We may assume that \ is one of
the above eigenvalues so that A > 0. Then g(t) = ¢1 cos(vV/At)+casin(v/At), where c1, ¢y are constants.

Thus for any positive integers m and n we have the following normal modes:

(1, 0,1) = Iy ) sinm0 (Ao 1),
(1, 0,8) = Jin(\ A7) sin ) sin(y A ).

Their superposition is a double series

u(r, 0,t) i i Jm Amn 1) sinmé (am,n cos(\/ Am,n t) + by Sin(\/ A t)>7

m=1n=1



where a,,, , and by, , are constants. The initial condition %(r, 6,0) = 0 is satisfied if all by, ,, are zero.
The initial condition u(r, 8,0) = f(r)sin 36 is satisfied if a, , = 0 for m # 3 and

Z asn J3(\/A3n 1)
n=1

is the Fourier-Bessel series of the function f(r) on the interval (0,1). That is, if

1
/0 f(r) J3(\/Aznr)rdr
— ; )
/0 |J3(\/ A3, r)\Qrdr
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Problem 2 (25 pts.) It is known that

Let f(z) =e /% z € R.

(i) Find the Fourier transform of f.

(ii) Find the inverse Fourier transform of f.

(iii) Find an expression for the convolution f x f that does not involve integrals.

1

Solutions (1) FIf] = —— i (i) 1] = VIR fs (i) (£ = f)a) = e
™
For any w € R we have that
w) = L e~/ g gy S e w2 = 1 w22 _ 1 w
FUw) =5z [ e dn = Vi et o - ),
fﬁl[f](w) = /OO e~ /2 oW (10 — /o ¢=w?/2 — \/%f(w)

By the convolution theorem, F[f x f] = 27 (F[f])? = f?. Therefore

(f * f)(x) = F () = /Oo (f(w))? ™" dw = /OO e~ i gy — \Jr e,

—00 —00

Problem 3 (35 pts.) Solve the initial value problem for the heat equation on the infinite
interval

2

u(z,0) = e /2,

You cannot use Green’s function unless you derive it.
Extra credit can be obtained when the solution will contain no integrals.



1
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The function f(x) = e~%*/2 is smooth and rapidly decaying as x — oo. This suggests that the
solution u(x,t) will have the same properties.
Apply the Fourier transform (relative to z) to both sides of the equation:

A(3]--12]

Solution: wu(x,t) =

ot dx?
Let U denote the Fourier transform of the solution w,

U(w,t) = Flu(-, t)](w) ! /oo u(z,t)e % dr.

=5 -
Then )
d [gﬂ - %(i’ 7 [ggﬂ = (iw)’U(w,t) = —w*U(w,1).
Therefore o 2
o5 v U(w,t).

For any w € R this is an ordinary differential equation in variable t. The general solution is U(w,t) =
ce ", where c is a constant. Note that ¢ depends on w, ¢ = c(w).

The initial condition u(z,0) = f(z) = e~*"/2 implies that U(w,0) = f(w). Hence c¢(w) = f(w) for
all w € R and U(w,t) = f(w)e . As shown in the solution of Problem 2, f(w) = (2r)~1/2¢=«*/2,
Then

—_

1
U((d, t) = \/777-‘— G_W2/2 €_w2t = e_(t+1/2)w2.

It remains to apply the inverse Fourier transform:

N

want) = F ) = [ U terdo = o= [
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Bonus Problem 4 (35 pts.)  Solve the initial-boundary value problem for the heat
equation on the interval [0, 1]

ou  d*u
— = O<xz<l, t>0
ot 0x? ( o ’ )
1 1, 1., .
u(x,O):—§x+§x ~ 57 + 2sinmx (0<z<1),

uw(0,t) =t, wu(l,t) =0.

1 1

Solution: wu(x,t) =t(1 —z) — 37 + 5332 - 6:1:3 +2¢ ™t sinTa.

The boundary conditions are not homogeneous. The function ug(z,t) = t(1 — x) satisfies them.
Let u(x,t) be the solution of the problem. Then the function w(z,t) = u(x,t) — uo(x,t) satisfies
homogeneous boundary conditions w(0,t) = w(1,t) = 0. Since u = w + up, we obtain
82

7(10 +U0) = @(w +U0),

4
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Also, w(x,0) = u(z,0)—ug(x,0) = u(z,0). Therefore w is the solution of the following initial-boundary
value problem:

x— 1.

ow 0w
—_— == -1 O<z<l, t>0
ot 8m2+x (0<z <, )
1 1, 1.4 ..
w(m,O):—gx—l—ix — 5 + 2sin 7z 0<z<l),

w(0,t) = w(l,t) =0.

The solution can be represented in the form w(z,t) = wo(x) + v(z,t), where wy is the steady-state
solution of the above equation that satisfies the boundary conditions:

d2w0
W"“’If—lzo, U)()(O):'w()(l):o,

while v is the solution of an initial-boundary value problem for the homogeneous heat equation:

ov 0%
— == O<zx<l, t>0
1 1, 1.4 ..
v(x,()):—wo(x)—gm+§x — ¢ + 2sinmz 0<z<l),
v(0,t) =v(1,t) = 0.
First we have to find wy. Since w{j(z) = 1— =, it follows that wo(z) = $2? — 223 + 12 + ¢2, where
¢1, c2 are constants. The boundary conditions wg(0) = wp(1) = 0 hold when ¢; = —%, co = 0. Thus
1 1 1
wo(x) = —3® + 53:2 - 63:3.

Now we know the initial condition that v should satisfy: v(z,0) = 2sinma. Observe that ¢(x) = sinwz
is an eigenfunction of the problem

"=-Xp,  4(0)=4¢(1) =0.

The corresponding eigenvalue is A = 72. Hence v is a solution with separated variables. It is easy to
obtain that v(z,t) = 2™ ! sin 7.
Finally, u(z,t) = uo(z,t) + wo(z) + v(z,t) = t(1 — x) — o+ 12% — La3 + 2¢~ ™t sin 7.



