Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Some possibly useful information

- Parseval's equality for the complex form of the Fourier series on $(-\pi, \pi)$:

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x} \Longrightarrow \int_{-\pi}^{\pi}|f(x)|^{2} d x=2 \pi \sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} .
$$

- Fourier sine and cosine transforms of the second derivative:

$$
S\left[f^{\prime \prime}\right](\omega)=\frac{2}{\pi} f(0) \omega-\omega^{2} S[f](\omega), \quad C\left[f^{\prime \prime}\right](\omega)=-\frac{2}{\pi} f^{\prime}(0)-\omega^{2} C[f](\omega) .
$$

- Laplace's operator in polar coordinates r, θ :

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} .
$$

- Any nonzero solution of a regular Sturm-Liouville equation

$$
\left(p \phi^{\prime}\right)^{\prime}+q \phi+\lambda \sigma \phi=0 \quad(a<x<b)
$$

satisfies the Rayleigh quotient relation

$$
\lambda=\frac{-\left.p \phi \phi^{\prime}\right|_{a} ^{b}+\int_{a}^{b}\left(p\left(\phi^{\prime}\right)^{2}-q \phi^{2}\right) d x}{\int_{a}^{b} \phi^{2} \sigma d x}
$$

- Some table integrals:

$$
\begin{aligned}
& \int x^{2} e^{i a x} d x=\left(\frac{x^{2}}{i a}+\frac{2 x}{a^{2}}-\frac{2}{i a^{3}}\right) e^{i a x}+C, \quad a \neq 0 ; \\
& \int_{-\infty}^{\infty} e^{-\alpha x^{2}} e^{i \beta x} d x=\sqrt{\frac{\pi}{\alpha}} e^{-\beta^{2} /(4 \alpha)}, \quad \alpha>0, \beta \in \mathbb{R} ; \\
& \int_{-\infty}^{\infty} e^{-\alpha|x|} e^{i \beta x} d x=\frac{2 \alpha}{\alpha^{2}+\beta^{2}}, \quad \alpha>0, \beta \in \mathbb{R} .
\end{aligned}
$$

Problem 1 Let $f(x)=x^{2}$.
(i) Find the Fourier series (complex form) of $f(x)$ on the interval $(-\pi, \pi)$.

The required series is $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$, where

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x .
$$

In particular,

$$
c_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\left.\frac{1}{2 \pi} \frac{x^{3}}{3}\right|_{x=-\pi} ^{\pi}=\frac{1}{2 \pi} \frac{2 \pi^{3}}{3}=\frac{\pi^{2}}{3} .
$$

If $n \neq 0$ then we have to integrate by parts twice:

$$
\begin{gathered}
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} e^{-i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{x^{2}\left(e^{-i n x}\right)^{\prime}}{-i n} d x=\left.\frac{1}{2 \pi} \frac{x^{2} e^{-i n x}}{-i n}\right|_{-\pi} ^{\pi}+\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{2 x e^{-i n x}}{i n} d x \\
=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{2 x e^{-i n x}}{i n} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{2 x\left(e^{-i n x}\right)^{\prime}}{-(i n)^{2}} d x=\left.\frac{1}{2 \pi} \frac{2 x e^{-i n x}}{-(i n)^{2}}\right|_{-\pi} ^{\pi}+\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{2 e^{-i n x}}{(i n)^{2}} d x \\
=\frac{e^{-i n \pi}+e^{i n \pi}}{n^{2}}+\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{2 e^{-i n x}}{(i n)^{2}} d x=\frac{2(-1)^{n}}{n^{2}}+\left.\frac{1}{2 \pi} \frac{2 e^{-i n x}}{-(i n)^{3}}\right|_{-\pi} ^{\pi}=\frac{2(-1)^{n}}{n^{2}} .
\end{gathered}
$$

To save time, we could instead use the table integral

$$
\int x^{2} e^{i a x} d x=\left(\frac{x^{2}}{i a}+\frac{2 x}{a^{2}}-\frac{2}{i a^{3}}\right) e^{i a x}+C, \quad a \neq 0 .
$$

According to this integral,

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} e^{-i n x} d x=\left.\frac{1}{2 \pi}\left(-\frac{x^{2}}{i n}+\frac{2 x}{n^{2}}+\frac{2}{i n^{3}}\right) e^{-i n x}\right|_{-\pi} ^{\pi}=\frac{1}{2 \pi} \frac{2 \pi\left(e^{-i n \pi}+e^{i n \pi}\right)}{n^{2}}=\frac{2(-1)^{n}}{n^{2}} .
$$

Thus

$$
x^{2} \sim \frac{\pi^{2}}{3}+\sum_{\substack{-\infty<n<\infty \\ n \neq 0}} \frac{2(-1)^{n}}{n^{2}} e^{i n x}
$$

(ii) Rewrite the Fourier series of $f(x)$ in the real form.

$$
\frac{\pi^{2}}{3}+\sum_{\substack{-\infty<n<\infty \\ n \neq 0}} \frac{2(-1)^{n}}{n^{2}} e^{i n x}=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{2(-1)^{n}}{n^{2}}\left(e^{i n x}+e^{-i n x}\right)=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos n x
$$

Thus

$$
x^{2} \sim \frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos n x .
$$

(iii) Sketch the function to which the Fourier series converges.

The series converges to the 2π-periodic function that coincides with $f(x)$ for $-\pi \leq x \leq \pi$. The sum is continuous and piecewise smooth hence the convergence is uniform. The derivative of the sum has jump discontinuities at points $\pi+2 k \pi, k \in \mathbb{Z}$. The graph is a scalloped curve.
(iv) Use Parseval's equality to evaluate $\sum_{n=1}^{\infty} n^{-4}$.

In our case, Parseval's equality can be written as

$$
\langle f, f\rangle=\sum_{n=-\infty}^{\infty} \frac{\left|\left\langle f, \phi_{n}\right\rangle\right|^{2}}{\left\langle\phi_{n}, \phi_{n}\right\rangle},
$$

where

$$
\langle g, h\rangle=\int_{-\pi}^{\pi} g(x) \overline{h(x)} d x
$$

and $\phi_{n}(x)=e^{i n x}$. Since $c_{n}=\frac{\left\langle f, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle}$ and $\left\langle\phi_{n}, \phi_{n}\right\rangle=2 \pi$ for all $n \in \mathbb{Z}$, it can be reduced to an equivalent form

$$
\int_{-\pi}^{\pi}|f(x)|^{2} d x=2 \pi \sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} .
$$

Now

$$
\begin{gathered}
\int_{-\pi}^{\pi}|f(x)|^{2} d x=\int_{-\pi}^{\pi} x^{4} d x=\left.\frac{x^{5}}{5}\right|_{-\pi} ^{\pi}=\frac{2 \pi^{5}}{5}, \\
\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}=\frac{\pi^{4}}{9}+2 \sum_{n=1}^{\infty} \frac{4}{n^{4}}
\end{gathered}
$$

Therefore

$$
\frac{1}{2 \pi} \frac{2 \pi^{5}}{5}=\frac{\pi^{4}}{9}+2 \sum_{n=1}^{\infty} \frac{4}{n^{4}}
$$

It follows that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{1}{8}\left(\frac{\pi^{4}}{5}-\frac{\pi^{4}}{9}\right)=\frac{\pi^{4}}{90} .
$$

Problem 2 Solve Laplace's equation in a disk,

$$
\nabla^{2} u=0 \quad(0 \leq r<a), \quad u(a, \theta)=f(\theta) .
$$

Laplace's operator in polar coordinates r, θ :

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} .
$$

We search for the solution of the boundary value problem as a superposition of solutions $u(r, \theta)=$ $h(r) \phi(\theta)(0<r<a,-\pi<\theta<\pi)$ with separated variables of Laplace's equation in the disk. Solutions with separated variables satisfy periodic boundary conditions

$$
u(r,-\pi)=u(r, \pi), \quad \frac{\partial u}{\partial \theta}(r,-\pi)=\frac{\partial u}{\partial \theta}(r, \pi)
$$

and the singular boundary condition

$$
|u(0, \theta)|<\infty .
$$

Substituting $u(r, \theta)=h(r) \phi(\theta)$ into Laplace's equation, we obtain

$$
\begin{gathered}
h^{\prime \prime}(r) \phi(\theta)+\frac{1}{r} h^{\prime}(r) \phi(\theta)+\frac{1}{r^{2}} h(r) \phi^{\prime \prime}(\theta)=0 \\
\frac{r^{2} h^{\prime \prime}(r)+r h^{\prime}(r)}{h(r)}=-\frac{\phi^{\prime \prime}(\theta)}{\phi(\theta)}
\end{gathered}
$$

Since the left-hand side does not depend on θ while the right-hand side does not depend on r, it follows that

$$
\frac{r^{2} h^{\prime \prime}(r)+r h^{\prime}(r)}{h(r)}=-\frac{\phi^{\prime \prime}(\theta)}{\phi(\theta)}=\lambda
$$

where λ is a constant. Then

$$
r^{2} h^{\prime \prime}(r)+r h^{\prime}(r)=\lambda h(r), \quad \phi^{\prime \prime}=-\lambda \phi
$$

Conversely, if functions h and ϕ are solutions of the above ODEs for the same value of λ, then $u(r, \theta)=h(r) \phi(\theta)$ is a solution of Laplace's equation in polar coordinates.

Substituting $u(r, \theta)=h(r) \phi(\theta)$ into the periodic and singular boundary conditions, we get

$$
h(r) \phi(-\pi)=h(r) \phi(\pi), \quad h(r) \phi^{\prime}(-\pi)=h(r) \phi^{\prime}(\pi), \quad|h(0) \phi(\theta)|<\infty
$$

It is no loss to assume that neither h nor ϕ is identically zero. Then the boundary conditions are satisfied if and only if $\phi(-\pi)=\phi(\pi), \phi^{\prime}(-\pi)=\phi^{\prime}(\pi),|h(0)|<\infty$.

To determine ϕ, we have an eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(-\pi)=\phi(\pi), \quad \phi^{\prime}(-\pi)=\phi^{\prime}(\pi)
$$

This problem has eigenvalues $\lambda_{n}=n^{2}, n=0,1,2, \ldots$ The eigenvalue $\lambda_{0}=0$ is simple, the others are of multiplicity 2 . The corresponding eigenfunctions are $\phi_{0}=1, \phi_{n}(\theta)=\cos n \theta$ and $\psi_{n}(\theta)=\sin n \theta$ for $n \geq 1$.

The function h is to be determined from the equation $r^{2} h^{\prime \prime}+r h^{\prime}=\lambda h$ and the boundary condition $|h(0)|<\infty$. We may assume that λ is one of the above eigenvalues so that $\lambda \geq 0$. If $\lambda>0$ then the general solution of the equation is $h(r)=c_{1} r^{\mu}+c_{2} r^{-\mu}$, where $\mu=\sqrt{\lambda}$ and c_{1}, c_{2} are constants. In the case $\lambda=0$, the general solution is $h(r)=c_{1}+c_{2} \log r$, where c_{1}, c_{2} are constants. In either case, the boundary condition $|h(0)|<\infty$ holds if $c_{2}=0$.

Thus we obtain the following solutions of Laplace's equation in the disk:

$$
u_{0}=1, \quad u_{n}(r, \theta)=r^{n} \cos n \theta, \quad \tilde{u}_{n}(r, \theta)=r^{n} \sin n \theta, \quad n=1,2, \ldots
$$

A superposition of these solutions is a series

$$
u(r, \theta)=\alpha_{0}+\sum_{n=1}^{\infty} r^{n}\left(\alpha_{n} \cos n \theta+\beta_{n} \sin n \theta\right)
$$

where $\alpha_{0}, \alpha_{1}, \ldots$ and $\beta_{1}, \beta_{2}, \ldots$ are constants. Substituting the series into the boundary condition $u(a, \theta)=f(\theta)$, we get

$$
f(\theta)=\alpha_{0}+\sum_{n=1}^{\infty} a^{n}\left(\alpha_{n} \cos n \theta+\beta_{n} \sin n \theta\right)
$$

The right-hand side is a Fourier series on the interval $(-\pi, \pi)$. Therefore the boundary condition is satisfied if the right-hand side coincides with the Fourier series

$$
A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)
$$

of the function $f(\theta)$ on $(-\pi, \pi)$. Hence

$$
\alpha_{0}=A_{0}, \quad \alpha_{n}=a^{-n} A_{n}, \quad \beta_{n}=a^{-n} B_{n}, \quad n=1,2, \ldots
$$

and

$$
u(r, \theta)=A_{0}+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)
$$

where

$$
A_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta, \quad A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n \theta d \theta, \quad B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin n \theta d \theta, \quad n=1,2, \ldots
$$

Problem 3 Find Green's function for the boundary value problem

$$
\frac{d^{2} u}{d x^{2}}-u=f(x) \quad(0<x<1), \quad u^{\prime}(0)=u^{\prime}(1)=0
$$

The Green function $G\left(x, x_{0}\right)$ should satisfy

$$
\frac{\partial^{2} G}{\partial x^{2}}-G=\delta\left(x-x_{0}\right), \quad \frac{\partial G}{\partial x}\left(0, x_{0}\right)=\frac{\partial G}{\partial x}\left(1, x_{0}\right)=0
$$

Since $\frac{\partial^{2} G}{\partial x^{2}}-G=0$ for $x<x_{0}$ and $x>x_{0}$, it follows that

$$
G\left(x, x_{0}\right)= \begin{cases}a e^{x}+b e^{-x} & \text { for } x<x_{0} \\ c e^{x}+d e^{-x} & \text { for } x>x_{0}\end{cases}
$$

where constants a, b, c, d may depend on x_{0}. Then

$$
\frac{\partial G}{\partial x}\left(x, x_{0}\right)= \begin{cases}a e^{x}-b e^{-x} & \text { for } x<x_{0} \\ c e^{x}-d e^{-x} & \text { for } x>x_{0}\end{cases}
$$

The boundary conditions imply that $a=b$ and $c e=d e^{-1}$.
Now impose the gluing conditions at $x=x_{0}$, that is, continuity of the function and jump discontinuity of the first derivative:

$$
\left.G\left(x, x_{0}\right)\right|_{x=x_{0}-}=\left.G\left(x, x_{0}\right)\right|_{x=x_{0}+},\left.\quad \frac{\partial G}{\partial x}\right|_{x=x_{0}+}-\left.\frac{\partial G}{\partial x}\right|_{x=x_{0}-}=1
$$

The two conditions imply that

$$
a e^{x_{0}}+b e^{-x_{0}}=c e^{x_{0}}+d e^{-x_{0}}, \quad c e^{x_{0}}-d e^{-x_{0}}-\left(a e^{x_{0}}-b e^{-x_{0}}\right)=1
$$

Since $b=a$ and $d=c e^{2}$, we get

$$
a\left(e^{x_{0}}+e^{-x_{0}}\right)=c\left(e^{x_{0}}+e^{2-x_{0}}\right), \quad c\left(e^{x_{0}}-e^{2-x_{0}}\right)-a\left(e^{x_{0}}-e^{-x_{0}}\right)=1
$$

Then

$$
\begin{gathered}
e^{x_{0}}+e^{-x_{0}}=c\left(e^{x_{0}}-e^{2-x_{0}}\right)\left(e^{x_{0}}+e^{-x_{0}}\right)-a\left(e^{x_{0}}-e^{-x_{0}}\right)\left(e^{x_{0}}+e^{-x_{0}}\right) \\
=c\left(e^{x_{0}}-e^{2-x_{0}}\right)\left(e^{x_{0}}+e^{-x_{0}}\right)-c\left(e^{x_{0}}+e^{2-x_{0}}\right)\left(e^{x_{0}}-e^{-x_{0}}\right)=2 c\left(1-e^{2}\right) .
\end{gathered}
$$

Therefore

$$
\begin{gathered}
c=\frac{e^{x_{0}}+e^{-x_{0}}}{2\left(1-e^{2}\right)}, \quad a=c \frac{e^{x_{0}}+e^{2-x_{0}}}{e^{x_{0}}+e^{-x_{0}}}=\frac{e^{x_{0}}+e^{2-x_{0}}}{2\left(1-e^{2}\right)} \\
d=c e^{2}=\frac{e^{x_{0}}+e^{-x_{0}}}{2\left(e^{-2}-1\right)}, \quad b=a=\frac{e^{x_{0}}+e^{2-x_{0}}}{2\left(1-e^{2}\right)}
\end{gathered}
$$

Finally,

$$
G\left(x, x_{0}\right)= \begin{cases}\frac{\left(e^{x_{0}}+e^{2-x_{0}}\right)\left(e^{x}+e^{-x}\right)}{2\left(1-e^{2}\right)} & \text { for } x<x_{0} \\ \frac{\left(e^{x_{0}}+e^{-x_{0}}\right)\left(e^{x}+e^{2-x}\right)}{2\left(1-e^{2}\right)} & \text { for } x>x_{0}\end{cases}
$$

Observe that $G\left(x, x_{0}\right)=G\left(x_{0}, x\right)$.

Problem 4 Solve the initial-boundary value problem for the heat equation,

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<\pi, \quad t>0) \\
& u(x, 0)=f(x) \quad(0<x<\pi) \\
& u(0, t)=0, \quad \frac{\partial u}{\partial x}(\pi, t)+2 u(\pi, t)=0
\end{aligned}
$$

In the process you will discover a sequence of eigenfunctions and eigenvalues, which you should name $\phi_{n}(x)$ and λ_{n}. Describe the λ_{n} qualitatively (e.g., find an equation for them) but do not expect to find their exact numerical values. Also, do not bother to evaluate normalization integrals for ϕ_{n}.

We search for the solution of the initial-boundary value problem as a superposition of solutions $u(x, t)=\phi(x) g(t)$ with separated variables of the heat equation that satisfy the boundary conditions.

Substituting $u(x, t)=\phi(x) g(t)$ into the heat equation, we obtain

$$
\begin{aligned}
\phi(x) g^{\prime}(t) & =\phi^{\prime \prime}(x) g(t), \\
\frac{g^{\prime}(t)}{g(t)} & =\frac{\phi^{\prime \prime}(x)}{\phi(x)}
\end{aligned}
$$

Since the left-hand side does not depend on x while the right-hand side does not depend on t, it follows that

$$
\frac{g^{\prime}(t)}{g(t)}=\frac{\phi^{\prime \prime}(x)}{\phi(x)}=-\lambda
$$

where λ is a constant. Then

$$
g^{\prime}=-\lambda g, \quad \phi^{\prime \prime}=-\lambda \phi
$$

Conversely, if functions g and ϕ are solutions of the above ODEs for the same value of λ, then $u(x, t)=\phi(x) g(t)$ is a solution of the heat equation.

Substituting $u(x, t)=\phi(x) g(t)$ into the boundary conditions, we get

$$
\phi(0) g(t)=0, \quad \phi^{\prime}(\pi) g(t)+2 \phi(\pi) g(t)=0
$$

It is no loss to assume that g is not identically zero. Then the boundary conditions are satisfied if and only if $\phi(0)=0, \phi^{\prime}(\pi)+2 \phi(\pi)=0$.

To determine ϕ, we have an eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=0, \quad \phi^{\prime}(\pi)+2 \phi(\pi)=0
$$

This is a regular Sturm-Liouville eigenvalue problem. If ϕ is an eigenfunction corresponding to an eigenvalue λ, then the Rayleigh quotient relation holds:

$$
\lambda=\frac{-\left.\phi \phi^{\prime}\right|_{0} ^{\pi}+\int_{0}^{\pi}\left|\phi^{\prime}(x)\right|^{2} d x}{\int_{0}^{\pi}|\phi(x)|^{2} d x}
$$

Note that $-\left.\phi \phi^{\prime}\right|_{0} ^{\pi}=\phi(0) \phi^{\prime}(0)-\phi(\pi) \phi^{\prime}(\pi)=2|\phi(\pi)|^{2}$. It follows that $\lambda \geq 0$. Moreover, $\lambda>0$ since constants are not eigenfunctions. Hence all eigenvalues are positive.

For any $\lambda>0$ the general solution of the equation $\phi^{\prime \prime}=-\lambda \phi$ is

$$
\phi(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)
$$

where c_{1}, c_{2} are constants. The boundary condition $\phi(0)=0$ holds if $c_{1}=0$. Then the condition $\phi^{\prime}(\pi)+2 \phi(\pi)=0$ holds if

$$
c_{2}(\sqrt{\lambda} \cos (\sqrt{\lambda} \pi)+2 \sin (\sqrt{\lambda} \pi))=0
$$

A nonzero solution exists if

$$
\sqrt{\lambda} \cos (\sqrt{\lambda} \pi)+2 \sin (\sqrt{\lambda} \pi)=0 \quad \Longrightarrow \quad-\frac{1}{2} \sqrt{\lambda}=\tan (\sqrt{\lambda} \pi)
$$

It follows that the eigenvalues $0<\lambda_{1}<\lambda_{2}<\ldots$ are solutions of the equation $-\frac{1}{2} \sqrt{\lambda}=\tan (\sqrt{\lambda} \pi)$, and the corresponding eigenfunctions are $\phi_{n}(x)=\sin \left(\sqrt{\lambda_{n}} x\right)$.

The function g is to be determined from the equation $g^{\prime}=-\lambda g$. The general solution is $g(t)=$ $c_{0} e^{-\lambda t}$, where c_{0} is a constant.

Thus we obtain the following solutions of the heat equation that satisfy the boundary conditions:

$$
u_{n}(x, t)=e^{-\lambda_{n} t} \phi_{n}(x)=e^{-\lambda_{n} t} \sin \left(\sqrt{\lambda_{n}} x\right), \quad n=1,2, \ldots
$$

A superposition of these solutions is a series

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n} t} \phi_{n}(x)=\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n} t} \sin \left(\sqrt{\lambda_{n}} x\right)
$$

where c_{1}, c_{2}, \ldots are constants. Substituting the series into the initial condition $u(x, 0)=f(x)$, we get

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)
$$

The right-hand side is a generalized Fourier series. Therefore the initial condition is satisfied if the right-hand side coincides with the generalized Fourier series of the function f, that is, if

$$
c_{n}=\frac{\int_{0}^{\pi} f\left(x_{0}\right) \phi_{n}\left(x_{0}\right) d x_{0}}{\int_{0}^{\pi}\left|\phi_{n}\left(x_{0}\right)\right|^{2} d x_{0}}, \quad n=1,2, \ldots
$$

Problem 5 By the method of your choice, solve the wave equation on the half-line

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<\infty,-\infty<t<\infty)
$$

subject to

$$
u(0, t)=0, \quad u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x)
$$

Fourier's method: In view of the boundary condition, let us apply the Fourier sine transform with respect to x to both sides of the equation:

$$
S\left[\frac{\partial^{2} u}{\partial t^{2}}\right]=S\left[\frac{\partial^{2} u}{\partial x^{2}}\right]
$$

Let $U(\omega, t)$ denote the Fourier sine transform of the solution $u(x, t)$:

$$
U(\omega, t)=S[u(\cdot, t)](\omega)=\frac{2}{\pi} \int_{0}^{\infty} u(x, t) \sin \omega x d x .
$$

Then

$$
S\left[\frac{\partial^{2} u}{\partial t^{2}}\right]=\frac{\partial^{2} U}{\partial t^{2}}, \quad S\left[\frac{\partial^{2} u}{\partial x^{2}}\right]=\frac{2}{\pi} u(0, t) \omega-\omega^{2} U(\omega, t)=-\omega^{2} U(\omega, t) .
$$

Hence

$$
\frac{\partial^{2} U}{\partial t^{2}}=-\omega^{2} U(\omega, t)
$$

If $\omega \neq 0$ then the general solution of the latter equation is $U(\omega, t)=a \cos \omega t+b \sin \omega t$, where $a=a(\omega)$, $b=b(\omega)$. Applying the Fourier sine transform to the initial conditions, we obtain

$$
U(\omega, 0)=F(\omega), \quad \frac{\partial U}{\partial t}(\omega, 0)=G(\omega),
$$

where $F=S[f], G=S[g]$. It follows that $a(\omega)=F(\omega), b(\omega)=G(\omega) / \omega$.
Now it remains to apply the inverse Fourier sine transform:

$$
u(x, t)=S^{-1}[U(\cdot, t)](x)=\int_{0}^{\infty}\left(F(\omega) \cos \omega t+\frac{G(\omega)}{\omega} \sin \omega t\right) \sin \omega x d \omega
$$

where

$$
F(\omega)=\frac{2}{\pi} \int_{0}^{\infty} f\left(x_{0}\right) \sin \omega x_{0} d x_{0}, \quad G(\omega)=\frac{2}{\pi} \int_{0}^{\infty} g\left(x_{0}\right) \sin \omega x_{0} d x_{0} .
$$

D'Alembert's method: Define $f(x)$ and $g(x)$ for negative x to be the odd extensions of the functions given for positive x, i.e., $f(-x)=-f(x)$ and $g(-x)=-g(x)$ for all $x>0$. By d'Alembert's formula, the function

$$
u(x, t)=\frac{1}{2}(f(x+t)+f(x-t))+\frac{1}{2} \int_{x-t}^{x+t} g\left(x_{0}\right) d x_{0}
$$

is the solution of the wave equation that satisfies the initial conditions

$$
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x)
$$

on the entire line. Since f and g are odd functions, it follows that $u(x, t)$ is also odd as a function of x. As a consequence, $u(0, t)=0$ for all t. Thus the boundary condition holds as well.

Bonus Problem 6 Solve Problem 5 by a distinctly different method.
See above.
Bonus Problem 7 Find a Green function implementing the solution of Problem 2.
The solution of Problem 2:

$$
u(r, \theta)=A_{0}+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right),
$$

where
$A_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(\theta_{0}\right) d \theta_{0}, \quad A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\theta_{0}\right) \cos n \theta_{0} d \theta_{0}, \quad B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\theta_{0}\right) \sin n \theta_{0} d \theta_{0}, \quad n=1,2, \ldots$
It can be rewritten as

$$
u(r, \theta)=\int_{-\pi}^{\pi} G\left(r, \theta ; \theta_{0}\right) f\left(\theta_{0}\right) d \theta_{0}
$$

where

$$
G\left(r, \theta ; \theta_{0}\right)=\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n}\left(\cos n \theta \cos n \theta_{0}+\sin n \theta \sin n \theta_{0}\right)
$$

is the desired Green function. The expression can be simplified:

$$
\begin{aligned}
G\left(r, \theta ; \theta_{0}\right) & =\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \cos n\left(\theta-\theta_{0}\right) \\
& =\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \cdot \frac{e^{i n\left(\theta-\theta_{0}\right)}+e^{-i n\left(\theta-\theta_{0}\right)}}{2} \\
& =\frac{1}{2 \pi} \sum_{n=0}^{\infty}\left(r a^{-1} e^{i\left(\theta-\theta_{0}\right)}\right)^{n}+\frac{1}{2 \pi} \sum_{n=1}^{\infty}\left(r a^{-1} e^{-i\left(\theta-\theta_{0}\right)}\right)^{n} \\
& =\frac{1}{2 \pi}\left(\frac{1}{1-r a^{-1} e^{i\left(\theta-\theta_{0}\right)}}+\frac{r a^{-1} e^{-i\left(\theta-\theta_{0}\right)}}{1-r a^{-1} e^{-i\left(\theta-\theta_{0}\right)}}\right) \\
& =\frac{1}{2 \pi}\left(\frac{a}{a-r e^{i\left(\theta-\theta_{0}\right)}}+\frac{r e^{-i\left(\theta-\theta_{0}\right)}}{a-r e^{-i\left(\theta-\theta_{0}\right)}}\right) \\
& =\frac{1}{2 \pi} \frac{a^{2}-r^{2}}{\left(a-r e^{i\left(\theta-\theta_{0}\right)}\right)\left(a-r e^{-i\left(\theta-\theta_{0}\right)}\right)} \\
& =\frac{1}{2 \pi} \frac{a^{2}-r^{2}}{a^{2}-2 a r \cos \left(\theta-\theta_{0}\right)+r^{2}}
\end{aligned}
$$

