Math 412-501Fall 2006Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Some possibly useful information

• Parseval's equality for the complex form of the Fourier series on $(-\pi, \pi)$:

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx} \quad \Longrightarrow \quad \int_{-\pi}^{\pi} |f(x)|^2 dx = 2\pi \sum_{n=-\infty}^{\infty} |c_n|^2.$$

• Fourier sine and cosine transforms of the second derivative:

$$S[f''](\omega) = \frac{2}{\pi} f(0) \,\omega - \omega^2 S[f](\omega), \qquad C[f''](\omega) = -\frac{2}{\pi} f'(0) - \omega^2 C[f](\omega).$$

• Laplace's operator in polar coordinates r, θ :

$$\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

• Any nonzero solution of a regular Sturm-Liouville equation

$$(p\phi')' + q\phi + \lambda\sigma\phi = 0 \qquad (a < x < b)$$

satisfies the Rayleigh quotient relation

$$\lambda = \frac{-p\phi\phi'\Big|_a^b + \int_a^b \left(p(\phi')^2 - q\phi^2\right) dx}{\int_a^b \phi^2 \sigma \, dx}.$$

• Some table integrals:

$$\int x^2 e^{iax} dx = \left(\frac{x^2}{ia} + \frac{2x}{a^2} - \frac{2}{ia^3}\right) e^{iax} + C, \quad a \neq 0;$$
$$\int_{-\infty}^{\infty} e^{-\alpha x^2} e^{i\beta x} dx = \sqrt{\frac{\pi}{\alpha}} e^{-\beta^2/(4\alpha)}, \quad \alpha > 0, \ \beta \in \mathbb{R};$$
$$\int_{-\infty}^{\infty} e^{-\alpha |x|} e^{i\beta x} dx = \frac{2\alpha}{\alpha^2 + \beta^2}, \quad \alpha > 0, \ \beta \in \mathbb{R}.$$

Problem 1 Let $f(x) = x^2$.

(i) Find the Fourier series (complex form) of f(x) on the interval $(-\pi, \pi)$.

The required series is
$$\sum_{n=-\infty}^{\infty} c_n e^{inx}$$
, where

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} \, dx.$$

In particular,

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 \, dx = \frac{1}{2\pi} \frac{x^3}{3} \Big|_{x=-\pi}^{\pi} = \frac{1}{2\pi} \frac{2\pi^3}{3} = \frac{\pi^2}{3}.$$

If $n\neq 0$ then we have to integrate by parts twice:

$$c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^{2} e^{-inx} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{x^{2} (e^{-inx})'}{-in} dx = \frac{1}{2\pi} \frac{x^{2} e^{-inx}}{-in} \Big|_{-\pi}^{\pi} + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{2x e^{-inx}}{in} dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{2x e^{-inx}}{in} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{2x (e^{-inx})'}{-(in)^{2}} dx = \frac{1}{2\pi} \frac{2x e^{-inx}}{-(in)^{2}} \Big|_{-\pi}^{\pi} + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{2e^{-inx}}{(in)^{2}} dx$$
$$= \frac{e^{-in\pi} + e^{in\pi}}{n^{2}} + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{2e^{-inx}}{(in)^{2}} dx = \frac{2(-1)^{n}}{n^{2}} + \frac{1}{2\pi} \frac{2e^{-inx}}{-(in)^{3}} \Big|_{-\pi}^{\pi} = \frac{2(-1)^{n}}{n^{2}}.$$

To save time, we could instead use the table integral

$$\int x^2 e^{iax} \, dx = \left(\frac{x^2}{ia} + \frac{2x}{a^2} - \frac{2}{ia^3}\right) e^{iax} + C, \quad a \neq 0.$$

According to this integral,

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 e^{-inx} \, dx = \frac{1}{2\pi} \left(-\frac{x^2}{in} + \frac{2x}{n^2} + \frac{2}{in^3} \right) e^{-inx} \Big|_{-\pi}^{\pi} = \frac{1}{2\pi} \frac{2\pi (e^{-in\pi} + e^{in\pi})}{n^2} = \frac{2(-1)^n}{n^2}$$

Thus

$$x^2 \sim \frac{\pi^2}{3} + \sum_{\substack{-\infty < n < \infty \\ n \neq 0}} \frac{2(-1)^n}{n^2} e^{inx}.$$

(ii) Rewrite the Fourier series of f(x) in the real form.

$$\frac{\pi^2}{3} + \sum_{\substack{-\infty < n < \infty \\ n \neq 0}} \frac{2(-1)^n}{n^2} e^{inx} = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{2(-1)^n}{n^2} \left(e^{inx} + e^{-inx} \right) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos nx.$$

Thus

$$x^{2} \sim \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos nx.$$

(iii) Sketch the function to which the Fourier series converges.

The series converges to the 2π -periodic function that coincides with f(x) for $-\pi \leq x \leq \pi$. The sum is continuous and piecewise smooth hence the convergence is uniform. The derivative of the sum has jump discontinuities at points $\pi + 2k\pi$, $k \in \mathbb{Z}$. The graph is a scalloped curve.

(iv) Use Parseval's equality to evaluate $\sum_{n=1}^{\infty} n^{-4}$.

In our case, Parseval's equality can be written as

$$\langle f, f \rangle = \sum_{n=-\infty}^{\infty} \frac{|\langle f, \phi_n \rangle|^2}{\langle \phi_n, \phi_n \rangle},$$

where

$$\langle g,h \rangle = \int_{-\pi}^{\pi} g(x) \overline{h(x)} \, dx$$

and $\phi_n(x) = e^{inx}$. Since $c_n = \frac{\langle f, \phi_n \rangle}{\langle \phi_n, \phi_n \rangle}$ and $\langle \phi_n, \phi_n \rangle = 2\pi$ for all $n \in \mathbb{Z}$, it can be reduced to an equivalent form

$$\int_{-\pi}^{\pi} |f(x)|^2 \, dx = 2\pi \sum_{n=-\infty}^{\infty} |c_n|^2.$$

Now

$$\int_{-\pi}^{\pi} |f(x)|^2 dx = \int_{-\pi}^{\pi} x^4 dx = \frac{x^5}{5} \Big|_{-\pi}^{\pi} = \frac{2\pi^5}{5} \Big|_{-\pi}^{\pi} =$$

Therefore

$$\frac{1}{2\pi} \frac{2\pi^5}{5} = \frac{\pi^4}{9} + 2\sum_{n=1}^{\infty} \frac{4}{n^4}.$$

It follows that

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{1}{8} \left(\frac{\pi^4}{5} - \frac{\pi^4}{9} \right) = \frac{\pi^4}{90}.$$

Problem 2 Solve Laplace's equation in a disk,

$$\nabla^2 u = 0 \quad (0 \le r < a), \qquad u(a, \theta) = f(\theta).$$

Laplace's operator in polar coordinates r, θ :

$$\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.$$

We search for the solution of the boundary value problem as a superposition of solutions $u(r, \theta) = h(r)\phi(\theta)$ ($0 < r < a, -\pi < \theta < \pi$) with separated variables of Laplace's equation in the disk. Solutions with separated variables satisfy periodic boundary conditions

$$u(r, -\pi) = u(r, \pi), \qquad \frac{\partial u}{\partial \theta}(r, -\pi) = \frac{\partial u}{\partial \theta}(r, \pi)$$

and the singular boundary condition

 $|u(0,\theta)| < \infty.$

Substituting $u(r, \theta) = h(r)\phi(\theta)$ into Laplace's equation, we obtain

$$h''(r)\phi(\theta) + \frac{1}{r}h'(r)\phi(\theta) + \frac{1}{r^2}h(r)\phi''(\theta) = 0,$$
$$\frac{r^2h''(r) + rh'(r)}{h(r)} = -\frac{\phi''(\theta)}{\phi(\theta)}.$$

Since the left-hand side does not depend on θ while the right-hand side does not depend on r, it follows that

$$\frac{r^2h''(r) + rh'(r)}{h(r)} = -\frac{\phi''(\theta)}{\phi(\theta)} = \lambda_{t}$$

where λ is a constant. Then

$$r^{2}h''(r) + rh'(r) = \lambda h(r), \qquad \phi'' = -\lambda\phi.$$

Conversely, if functions h and ϕ are solutions of the above ODEs for the same value of λ , then $u(r, \theta) = h(r)\phi(\theta)$ is a solution of Laplace's equation in polar coordinates.

Substituting $u(r, \theta) = h(r)\phi(\theta)$ into the periodic and singular boundary conditions, we get

$$h(r)\phi(-\pi) = h(r)\phi(\pi), \quad h(r)\phi'(-\pi) = h(r)\phi'(\pi), \quad |h(0)\phi(\theta)| < \infty.$$

It is no loss to assume that neither h nor ϕ is identically zero. Then the boundary conditions are satisfied if and only if $\phi(-\pi) = \phi(\pi)$, $\phi'(-\pi) = \phi'(\pi)$, $|h(0)| < \infty$.

To determine ϕ , we have an eigenvalue problem

$$\phi'' = -\lambda\phi, \qquad \phi(-\pi) = \phi(\pi), \quad \phi'(-\pi) = \phi'(\pi).$$

This problem has eigenvalues $\lambda_n = n^2$, n = 0, 1, 2, ... The eigenvalue $\lambda_0 = 0$ is simple, the others are of multiplicity 2. The corresponding eigenfunctions are $\phi_0 = 1$, $\phi_n(\theta) = \cos n\theta$ and $\psi_n(\theta) = \sin n\theta$ for $n \ge 1$.

The function h is to be determined from the equation $r^2h'' + rh' = \lambda h$ and the boundary condition $|h(0)| < \infty$. We may assume that λ is one of the above eigenvalues so that $\lambda \ge 0$. If $\lambda > 0$ then the general solution of the equation is $h(r) = c_1 r^{\mu} + c_2 r^{-\mu}$, where $\mu = \sqrt{\lambda}$ and c_1, c_2 are constants. In the case $\lambda = 0$, the general solution is $h(r) = c_1 + c_2 \log r$, where c_1, c_2 are constants. In either case, the boundary condition $|h(0)| < \infty$ holds if $c_2 = 0$.

Thus we obtain the following solutions of Laplace's equation in the disk:

$$u_0 = 1,$$
 $u_n(r,\theta) = r^n \cos n\theta,$ $\tilde{u}_n(r,\theta) = r^n \sin n\theta,$ $n = 1, 2, \dots$

A superposition of these solutions is a series

$$u(r,\theta) = \alpha_0 + \sum_{n=1}^{\infty} r^n (\alpha_n \cos n\theta + \beta_n \sin n\theta),$$

where $\alpha_0, \alpha_1, \ldots$ and β_1, β_2, \ldots are constants. Substituting the series into the boundary condition $u(a, \theta) = f(\theta)$, we get

$$f(\theta) = \alpha_0 + \sum_{n=1}^{\infty} a^n (\alpha_n \cos n\theta + \beta_n \sin n\theta).$$

The right-hand side is a Fourier series on the interval $(-\pi,\pi)$. Therefore the boundary condition is satisfied if the right-hand side coincides with the Fourier series

$$A_0 + \sum_{n=1}^{\infty} (A_n \cos n\theta + B_n \sin n\theta)$$

of the function $f(\theta)$ on $(-\pi, \pi)$. Hence

$$\alpha_0 = A_0, \qquad \alpha_n = a^{-n} A_n, \quad \beta_n = a^{-n} B_n, \quad n = 1, 2, \dots$$

and

$$u(r,\theta) = A_0 + \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n (A_n \cos n\theta + B_n \sin n\theta),$$

where

$$A_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \, d\theta, \qquad A_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n\theta \, d\theta, \quad B_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin n\theta \, d\theta, \quad n = 1, 2, \dots$$

Problem 3 Find Green's function for the boundary value problem

$$\frac{d^2u}{dx^2} - u = f(x) \quad (0 < x < 1), \qquad u'(0) = u'(1) = 0.$$

The Green function $G(x, x_0)$ should satisfy

$$\frac{\partial^2 G}{\partial x^2} - G = \delta(x - x_0), \qquad \frac{\partial G}{\partial x}(0, x_0) = \frac{\partial G}{\partial x}(1, x_0) = 0.$$

Since $\frac{\partial^2 G}{\partial x^2} - G = 0$ for $x < x_0$ and $x > x_0$, it follows that

$$G(x, x_0) = \begin{cases} ae^x + be^{-x} & \text{for } x < x_0, \\ ce^x + de^{-x} & \text{for } x > x_0, \end{cases}$$

where constants a, b, c, d may depend on x_0 . Then

$$\frac{\partial G}{\partial x}(x, x_0) = \begin{cases} ae^x - be^{-x} & \text{for } x < x_0, \\ ce^x - de^{-x} & \text{for } x > x_0. \end{cases}$$

The boundary conditions imply that a = b and $ce = de^{-1}$.

Now impose the gluing conditions at $x = x_0$, that is, continuity of the function and jump discontinuity of the first derivative:

$$G(x,x_0)\Big|_{x=x_0-} = G(x,x_0)\Big|_{x=x_0+}, \qquad \frac{\partial G}{\partial x}\Big|_{x=x_0+} - \frac{\partial G}{\partial x}\Big|_{x=x_0-} = 1.$$

The two conditions imply that

$$ae^{x_0} + be^{-x_0} = ce^{x_0} + de^{-x_0}, \qquad ce^{x_0} - de^{-x_0} - (ae^{x_0} - be^{-x_0}) = 1.$$

Since b = a and $d = ce^2$, we get

$$a(e^{x_0} + e^{-x_0}) = c(e^{x_0} + e^{2-x_0}), \qquad c(e^{x_0} - e^{2-x_0}) - a(e^{x_0} - e^{-x_0}) = 1.$$

Then

$$e^{x_0} + e^{-x_0} = c(e^{x_0} - e^{2-x_0})(e^{x_0} + e^{-x_0}) - a(e^{x_0} - e^{-x_0})(e^{x_0} + e^{-x_0})$$
$$= c(e^{x_0} - e^{2-x_0})(e^{x_0} + e^{-x_0}) - c(e^{x_0} + e^{2-x_0})(e^{x_0} - e^{-x_0}) = 2c(1 - e^2).$$

Therefore

$$c = \frac{e^{x_0} + e^{-x_0}}{2(1 - e^2)}, \qquad a = c \frac{e^{x_0} + e^{2-x_0}}{e^{x_0} + e^{-x_0}} = \frac{e^{x_0} + e^{2-x_0}}{2(1 - e^2)},$$
$$d = ce^2 = \frac{e^{x_0} + e^{-x_0}}{2(e^{-2} - 1)}, \qquad b = a = \frac{e^{x_0} + e^{2-x_0}}{2(1 - e^2)}.$$

Finally,

$$G(x, x_0) = \begin{cases} \frac{(e^{x_0} + e^{2-x_0})(e^x + e^{-x})}{2(1 - e^2)} & \text{for } x < x_0, \\ \frac{(e^{x_0} + e^{-x_0})(e^x + e^{2-x})}{2(1 - e^2)} & \text{for } x > x_0. \end{cases}$$

Observe that $G(x, x_0) = G(x_0, x)$.

Problem 4 Solve the initial-boundary value problem for the heat equation,

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \qquad (0 < x < \pi, \quad t > 0),$$
$$u(x,0) = f(x) \qquad (0 < x < \pi),$$
$$u(0,t) = 0, \quad \frac{\partial u}{\partial x}(\pi,t) + 2u(\pi,t) = 0.$$

In the process you will discover a sequence of eigenfunctions and eigenvalues, which you should name $\phi_n(x)$ and λ_n . Describe the λ_n qualitatively (e.g., find an equation for them) but do not expect to find their exact numerical values. Also, do not bother to evaluate normalization integrals for ϕ_n .

We search for the solution of the initial-boundary value problem as a superposition of solutions $u(x,t) = \phi(x)g(t)$ with separated variables of the heat equation that satisfy the boundary conditions. Substituting $u(x,t) = \phi(x)g(t)$ into the heat equation, we obtain

$$\phi(x)g'(t) = \phi''(x)g(t),$$
$$\frac{g'(t)}{g(t)} = \frac{\phi''(x)}{\phi(x)}.$$

Since the left-hand side does not depend on x while the right-hand side does not depend on t, it follows that

$$\frac{g'(t)}{g(t)} = \frac{\phi''(x)}{\phi(x)} = -\lambda,$$

where λ is a constant. Then

$$g' = -\lambda g, \qquad \phi'' = -\lambda \phi$$

Conversely, if functions g and ϕ are solutions of the above ODEs for the same value of λ , then $u(x,t) = \phi(x)g(t)$ is a solution of the heat equation.

Substituting $u(x,t) = \phi(x)g(t)$ into the boundary conditions, we get

$$\phi(0)g(t) = 0, \qquad \phi'(\pi)g(t) + 2\phi(\pi)g(t) = 0.$$

It is no loss to assume that g is not identically zero. Then the boundary conditions are satisfied if and only if $\phi(0) = 0$, $\phi'(\pi) + 2\phi(\pi) = 0$.

To determine ϕ , we have an eigenvalue problem

$$\phi'' = -\lambda\phi, \qquad \phi(0) = 0, \quad \phi'(\pi) + 2\phi(\pi) = 0.$$

This is a regular Sturm-Liouville eigenvalue problem. If ϕ is an eigenfunction corresponding to an eigenvalue λ , then the Rayleigh quotient relation holds:

$$\lambda = \frac{-\phi \phi' \Big|_0^{\pi} + \int_0^{\pi} |\phi'(x)|^2 \, dx}{\int_0^{\pi} |\phi(x)|^2 \, dx}.$$

Note that $-\phi\phi' \Big|_0^{\pi} = \phi(0)\phi'(0) - \phi(\pi)\phi'(\pi) = 2|\phi(\pi)|^2$. It follows that $\lambda \ge 0$. Moreover, $\lambda > 0$ since constants are not eigenfunctions. Hence all eigenvalues are positive.

For any $\lambda > 0$ the general solution of the equation $\phi'' = -\lambda \phi$ is

$$\phi(x) = c_1 \cos(\sqrt{\lambda} x) + c_2 \sin(\sqrt{\lambda} x),$$

where c_1, c_2 are constants. The boundary condition $\phi(0) = 0$ holds if $c_1 = 0$. Then the condition $\phi'(\pi) + 2\phi(\pi) = 0$ holds if

$$c_2\left(\sqrt{\lambda}\cos(\sqrt{\lambda}\pi) + 2\sin(\sqrt{\lambda}\pi)\right) = 0.$$

A nonzero solution exists if

$$\sqrt{\lambda}\cos(\sqrt{\lambda}\pi) + 2\sin(\sqrt{\lambda}\pi) = 0 \implies -\frac{1}{2}\sqrt{\lambda} = \tan(\sqrt{\lambda}\pi).$$

It follows that the eigenvalues $0 < \lambda_1 < \lambda_2 < \dots$ are solutions of the equation $-\frac{1}{2}\sqrt{\lambda} = \tan(\sqrt{\lambda}\pi)$, and the corresponding eigenfunctions are $\phi_n(x) = \sin(\sqrt{\lambda_n}x)$.

The function g is to be determined from the equation $g' = -\lambda g$. The general solution is $g(t) = c_0 e^{-\lambda t}$, where c_0 is a constant.

Thus we obtain the following solutions of the heat equation that satisfy the boundary conditions:

$$u_n(x,t) = e^{-\lambda_n t} \phi_n(x) = e^{-\lambda_n t} \sin(\sqrt{\lambda_n} x), \quad n = 1, 2, \dots$$

A superposition of these solutions is a series

$$u(x,t) = \sum_{n=1}^{\infty} c_n e^{-\lambda_n t} \phi_n(x) = \sum_{n=1}^{\infty} c_n e^{-\lambda_n t} \sin(\sqrt{\lambda_n} x),$$

where c_1, c_2, \ldots are constants. Substituting the series into the initial condition u(x, 0) = f(x), we get

$$f(x) = \sum_{n=1}^{\infty} c_n \phi_n(x)$$

The right-hand side is a generalized Fourier series. Therefore the initial condition is satisfied if the right-hand side coincides with the generalized Fourier series of the function f, that is, if

$$c_n = \frac{\int_0^{\pi} f(x_0)\phi_n(x_0) \, dx_0}{\int_0^{\pi} |\phi_n(x_0)|^2 \, dx_0}, \quad n = 1, 2, \dots$$

Problem 5 By the method of your choice, solve the wave equation on the half-line

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \qquad (0 < x < \infty, \ -\infty < t < \infty)$$

subject to

$$u(0,t) = 0,$$
 $u(x,0) = f(x),$ $\frac{\partial u}{\partial t}(x,0) = g(x).$

Fourier's method: In view of the boundary condition, let us apply the Fourier sine transform with respect to x to both sides of the equation:

$$S\left[\frac{\partial^2 u}{\partial t^2}\right] = S\left[\frac{\partial^2 u}{\partial x^2}\right].$$

Let $U(\omega, t)$ denote the Fourier sine transform of the solution u(x, t):

$$U(\omega,t) = S[u(\cdot,t)](\omega) = \frac{2}{\pi} \int_0^\infty u(x,t) \sin \omega x \, dx.$$

Then

$$S\left[\frac{\partial^2 u}{\partial t^2}\right] = \frac{\partial^2 U}{\partial t^2}, \qquad S\left[\frac{\partial^2 u}{\partial x^2}\right] = \frac{2}{\pi}u(0,t)\omega - \omega^2 U(\omega,t) = -\omega^2 U(\omega,t).$$

Hence

$$\frac{\partial^2 U}{\partial t^2} = -\omega^2 U(\omega, t).$$

If $\omega \neq 0$ then the general solution of the latter equation is $U(\omega, t) = a \cos \omega t + b \sin \omega t$, where $a = a(\omega)$, $b = b(\omega)$. Applying the Fourier sine transform to the initial conditions, we obtain

$$U(\omega, 0) = F(\omega), \qquad \frac{\partial U}{\partial t}(\omega, 0) = G(\omega),$$

where F = S[f], G = S[g]. It follows that $a(\omega) = F(\omega)$, $b(\omega) = G(\omega)/\omega$. Now it remains to apply the inverse Fourier sine transform:

$$u(x,t) = S^{-1}[U(\cdot,t)](x) = \int_0^\infty \left(F(\omega)\cos\omega t + \frac{G(\omega)}{\omega}\sin\omega t\right)\sin\omega x \,d\omega,$$

where

$$F(\omega) = \frac{2}{\pi} \int_0^\infty f(x_0) \sin \omega x_0 \, dx_0, \qquad G(\omega) = \frac{2}{\pi} \int_0^\infty g(x_0) \sin \omega x_0 \, dx_0$$

D'Alembert's method: Define f(x) and g(x) for negative x to be the odd extensions of the functions given for positive x, i.e., f(-x) = -f(x) and g(-x) = -g(x) for all x > 0. By d'Alembert's formula, the function

$$u(x,t) = \frac{1}{2} \left(f(x+t) + f(x-t) \right) + \frac{1}{2} \int_{x-t}^{x+t} g(x_0) \, dx_0$$

is the solution of the wave equation that satisfies the initial conditions

$$u(x,0) = f(x),$$
 $\frac{\partial u}{\partial t}(x,0) = g(x)$

on the entire line. Since f and g are odd functions, it follows that u(x,t) is also odd as a function of x. As a consequence, u(0,t) = 0 for all t. Thus the boundary condition holds as well.

Bonus Problem 6 Solve Problem 5 by a distinctly different method.

See above.

Bonus Problem 7 Find a Green function implementing the solution of Problem 2.

The solution of Problem 2:

$$u(r,\theta) = A_0 + \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n (A_n \cos n\theta + B_n \sin n\theta),$$

where

$$A_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta_0) \, d\theta_0, \quad A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta_0) \cos n\theta_0 \, d\theta_0, \quad B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta_0) \sin n\theta_0 \, d\theta_0, \quad n = 1, 2, \dots$$

It can be rewritten as

$$u(r,\theta) = \int_{-\pi}^{\pi} G(r,\theta;\theta_0) f(\theta_0) d\theta_0,$$

where

$$G(r,\theta;\theta_0) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n (\cos n\theta \cos n\theta_0 + \sin n\theta \sin n\theta_0)$$

is the desired Green function. The expression can be simplified:

$$\begin{split} G(r,\theta;\theta_0) &= \frac{1}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n \cos n(\theta - \theta_0) \\ &= \frac{1}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n \cdot \frac{e^{in(\theta - \theta_0)} + e^{-in(\theta - \theta_0)}}{2} \\ &= \frac{1}{2\pi} \sum_{n=0}^{\infty} \left(ra^{-1}e^{i(\theta - \theta_0)}\right)^n + \frac{1}{2\pi} \sum_{n=1}^{\infty} \left(ra^{-1}e^{-i(\theta - \theta_0)}\right)^n \\ &= \frac{1}{2\pi} \left(\frac{1}{1 - ra^{-1}e^{i(\theta - \theta_0)}} + \frac{ra^{-1}e^{-i(\theta - \theta_0)}}{1 - ra^{-1}e^{-i(\theta - \theta_0)}}\right) \\ &= \frac{1}{2\pi} \left(\frac{a}{a - re^{i(\theta - \theta_0)}} + \frac{re^{-i(\theta - \theta_0)}}{a - re^{-i(\theta - \theta_0)}}\right) \\ &= \frac{1}{2\pi} \frac{a^2 - r^2}{(a - re^{i(\theta - \theta_0)})(a - re^{-i(\theta - \theta_0)})} \\ &= \frac{1}{2\pi} \frac{1}{2\pi} \frac{a^2 - r^2}{a^2 - 2ar\cos(\theta - \theta_0) + r^2}. \end{split}$$