
Math 412-501 Fall 2006

Sample problems for the final exam: Solutions
Any problem may be altered or replaced by a different one!

Some possibly useful information

• Parseval’s equality for the complex form of the Fourier series on (−π, π):

f(x) =
∞∑

n=−∞

cne
inx =⇒

∫ π

−π

|f(x)|2 dx = 2π
∞∑

n=−∞

|cn|2.

• Fourier sine and cosine transforms of the second derivative:

S[f ′′](ω) =
2

π
f(0) ω − ω2S[f ](ω), C[f ′′](ω) = − 2

π
f ′(0)− ω2C[f ](ω).

• Laplace’s operator in polar coordinates r, θ:

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
.

• Any nonzero solution of a regular Sturm-Liouville equation

(pφ′)′ + qφ + λσφ = 0 (a < x < b)

satisfies the Rayleigh quotient relation

λ =

−pφφ′
∣∣∣b
a

+

∫ b

a

(
p(φ′)2 − qφ2

)
dx∫ b

a

φ2σ dx

.

• Some table integrals:∫
x2eiax dx =

(
x2

ia
+

2x

a2
− 2

ia3

)
eiax + C, a 6= 0;

∫ ∞

−∞
e−αx2

eiβx dx =

√
π

α
e−β2/(4α), α > 0, β ∈ R;

∫ ∞

−∞
e−α|x|eiβx dx =

2α

α2 + β2
, α > 0, β ∈ R.
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Problem 1 Let f(x) = x2.

(i) Find the Fourier series (complex form) of f(x) on the interval (−π, π).

The required series is
∞∑

n=−∞
cne

inx, where

cn =
1
2π

∫ π

−π
f(x)e−inx dx.

In particular,

c0 =
1
2π

∫ π

−π
f(x) dx =

1
2π

∫ π

−π
x2 dx =

1
2π

x3

3

∣∣∣π
x=−π

=
1
2π

2π3

3
=
π2

3
.

If n 6= 0 then we have to integrate by parts twice:

cn =
1
2π

∫ π

−π
x2e−inx dx =

1
2π

∫ π

−π

x2(e−inx)′

−in
dx =

1
2π

x2e−inx

−in

∣∣∣π
−π

+
1
2π

∫ π

−π

2xe−inx

in
dx

=
1
2π

∫ π

−π

2xe−inx

in
dx =

1
2π

∫ π

−π

2x(e−inx)′

−(in)2
dx =

1
2π

2xe−inx

−(in)2

∣∣∣π
−π

+
1
2π

∫ π

−π

2e−inx

(in)2
dx

=
e−inπ + einπ

n2
+

1
2π

∫ π

−π

2e−inx

(in)2
dx =

2(−1)n

n2
+

1
2π

2e−inx

−(in)3

∣∣∣π
−π

=
2(−1)n

n2
.

To save time, we could instead use the table integral∫
x2eiax dx =

(
x2

ia
+

2x
a2

− 2
ia3

)
eiax + C, a 6= 0.

According to this integral,

cn =
1
2π

∫ π

−π
x2e−inx dx =

1
2π

(
−x

2

in
+

2x
n2

+
2
in3

)
e−inx

∣∣∣π
−π

=
1
2π

2π(e−inπ + einπ)
n2

=
2(−1)n

n2
.

Thus

x2 ∼ π2

3
+

∑
−∞<n<∞

n6=0

2(−1)n

n2
einx.

(ii) Rewrite the Fourier series of f(x) in the real form.

π2

3
+

∑
−∞<n<∞

n6=0

2(−1)n

n2
einx =

π2

3
+

∞∑
n=1

2(−1)n

n2
(einx + e−inx) =

π2

3
+

∞∑
n=1

4(−1)n

n2
cosnx.

Thus

x2 ∼ π2

3
+

∞∑
n=1

4(−1)n

n2
cosnx.

(iii) Sketch the function to which the Fourier series converges.

2



The series converges to the 2π-periodic function that coincides with f(x) for −π ≤ x ≤ π. The
sum is continuous and piecewise smooth hence the convergence is uniform. The derivative of the sum
has jump discontinuities at points π + 2kπ, k ∈ Z. The graph is a scalloped curve.

(iv) Use Parseval’s equality to evaluate
∑∞

n=1 n−4.

In our case, Parseval’s equality can be written as

〈f, f〉 =
∞∑

n=−∞

|〈f, φn〉|2

〈φn, φn〉
,

where
〈g, h〉 =

∫ π

−π
g(x)h(x) dx

and φn(x) = einx. Since cn = 〈f,φn〉
〈φn,φn〉 and 〈φn, φn〉 = 2π for all n ∈ Z, it can be reduced to an

equivalent form ∫ π

−π
|f(x)|2 dx = 2π

∞∑
n=−∞

|cn|2.

Now ∫ π

−π
|f(x)|2 dx =

∫ π

−π
x4 dx =

x5

5

∣∣∣π
−π

=
2π5

5
,

∞∑
n=−∞

|cn|2 =
π4

9
+ 2

∞∑
n=1

4
n4
.

Therefore
1
2π

2π5

5
=
π4

9
+ 2

∞∑
n=1

4
n4
.

It follows that
∞∑

n=1

1
n4

=
1
8

(
π4

5
− π4

9

)
=
π4

90
.

Problem 2 Solve Laplace’s equation in a disk,

∇2u = 0 (0 ≤ r < a), u(a, θ) = f(θ).

Laplace’s operator in polar coordinates r, θ:

∇2u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2
∂2u

∂θ2
.

We search for the solution of the boundary value problem as a superposition of solutions u(r, θ) =
h(r)φ(θ) (0 < r < a, −π < θ < π) with separated variables of Laplace’s equation in the disk. Solutions
with separated variables satisfy periodic boundary conditions

u(r,−π) = u(r, π),
∂u

∂θ
(r,−π) =

∂u

∂θ
(r, π)

and the singular boundary condition
|u(0, θ)| <∞.
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Substituting u(r, θ) = h(r)φ(θ) into Laplace’s equation, we obtain

h′′(r)φ(θ) +
1
r
h′(r)φ(θ) +

1
r2
h(r)φ′′(θ) = 0,

r2h′′(r) + rh′(r)
h(r)

= −φ
′′(θ)
φ(θ)

.

Since the left-hand side does not depend on θ while the right-hand side does not depend on r, it follows
that

r2h′′(r) + rh′(r)
h(r)

= −φ
′′(θ)
φ(θ)

= λ,

where λ is a constant. Then

r2h′′(r) + rh′(r) = λh(r), φ′′ = −λφ.

Conversely, if functions h and φ are solutions of the above ODEs for the same value of λ, then
u(r, θ) = h(r)φ(θ) is a solution of Laplace’s equation in polar coordinates.

Substituting u(r, θ) = h(r)φ(θ) into the periodic and singular boundary conditions, we get

h(r)φ(−π) = h(r)φ(π), h(r)φ′(−π) = h(r)φ′(π), |h(0)φ(θ)| <∞.

It is no loss to assume that neither h nor φ is identically zero. Then the boundary conditions are
satisfied if and only if φ(−π) = φ(π), φ′(−π) = φ′(π), |h(0)| <∞.

To determine φ, we have an eigenvalue problem

φ′′ = −λφ, φ(−π) = φ(π), φ′(−π) = φ′(π).

This problem has eigenvalues λn = n2, n = 0, 1, 2, . . . . The eigenvalue λ0 = 0 is simple, the others are
of multiplicity 2. The corresponding eigenfunctions are φ0 = 1, φn(θ) = cosnθ and ψn(θ) = sinnθ for
n ≥ 1.

The function h is to be determined from the equation r2h′′+rh′ = λh and the boundary condition
|h(0)| < ∞. We may assume that λ is one of the above eigenvalues so that λ ≥ 0. If λ > 0 then the
general solution of the equation is h(r) = c1r

µ + c2r
−µ, where µ =

√
λ and c1, c2 are constants. In the

case λ = 0, the general solution is h(r) = c1 + c2 log r, where c1, c2 are constants. In either case, the
boundary condition |h(0)| <∞ holds if c2 = 0.

Thus we obtain the following solutions of Laplace’s equation in the disk:

u0 = 1, un(r, θ) = rn cosnθ, ũn(r, θ) = rn sinnθ, n = 1, 2, . . .

A superposition of these solutions is a series

u(r, θ) = α0 +
∑∞

n=1
rn(αn cosnθ + βn sinnθ),

where α0, α1, . . . and β1, β2, . . . are constants. Substituting the series into the boundary condition
u(a, θ) = f(θ), we get

f(θ) = α0 +
∑∞

n=1
an(αn cosnθ + βn sinnθ).

The right-hand side is a Fourier series on the interval (−π, π). Therefore the boundary condition is
satisfied if the right-hand side coincides with the Fourier series

A0 +
∑∞

n=1
(An cosnθ +Bn sinnθ)

of the function f(θ) on (−π, π). Hence

α0 = A0, αn = a−nAn, βn = a−nBn, n = 1, 2, . . .
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and
u(r, θ) = A0 +

∑∞

n=1

(r
a

)n
(An cosnθ +Bn sinnθ),

where

A0 =
1
2π

∫ π

−π
f(θ) dθ, An =

1
π

∫ π

−π
f(θ) cosnθ dθ, Bn =

1
π

∫ π

−π
f(θ) sinnθ dθ, n = 1, 2, . . .

Problem 3 Find Green’s function for the boundary value problem

d2u

dx2
− u = f(x) (0 < x < 1), u′(0) = u′(1) = 0.

The Green function G(x, x0) should satisfy

∂2G

∂x2
−G = δ(x− x0),

∂G

∂x
(0, x0) =

∂G

∂x
(1, x0) = 0.

Since
∂2G

∂x2
−G = 0 for x < x0 and x > x0, it follows that

G(x, x0) =

{
aex + be−x for x < x0,

cex + de−x for x > x0,

where constants a, b, c, d may depend on x0. Then

∂G

∂x
(x, x0) =

{
aex − be−x for x < x0,

cex − de−x for x > x0.

The boundary conditions imply that a = b and ce = de−1.
Now impose the gluing conditions at x = x0, that is, continuity of the function and jump discon-

tinuity of the first derivative:

G(x, x0)
∣∣
x=x0−= G(x, x0)

∣∣
x=x0+

,
∂G

∂x

∣∣∣
x=x0+

−∂G
∂x

∣∣∣
x=x0−

= 1.

The two conditions imply that

aex0 + be−x0 = cex0 + de−x0 , cex0 − de−x0 − (aex0 − be−x0) = 1.

Since b = a and d = ce2, we get

a(ex0 + e−x0) = c(ex0 + e2−x0), c(ex0 − e2−x0)− a(ex0 − e−x0) = 1.

Then
ex0 + e−x0 = c(ex0 − e2−x0)(ex0 + e−x0)− a(ex0 − e−x0)(ex0 + e−x0)

= c(ex0 − e2−x0)(ex0 + e−x0)− c(ex0 + e2−x0)(ex0 − e−x0) = 2c(1− e2).

Therefore

c =
ex0 + e−x0

2(1− e2)
, a = c

ex0 + e2−x0

ex0 + e−x0
=
ex0 + e2−x0

2(1− e2)
,

d = ce2 =
ex0 + e−x0

2(e−2 − 1)
, b = a =

ex0 + e2−x0

2(1− e2)
.
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Finally,

G(x, x0) =


(ex0 + e2−x0)(ex + e−x)

2(1− e2)
for x < x0,

(ex0 + e−x0)(ex + e2−x)
2(1− e2)

for x > x0.

Observe that G(x, x0) = G(x0, x).

Problem 4 Solve the initial-boundary value problem for the heat equation,

∂u

∂t
=

∂2u

∂x2
(0 < x < π, t > 0),

u(x, 0) = f(x) (0 < x < π),

u(0, t) = 0,
∂u

∂x
(π, t) + 2u(π, t) = 0.

In the process you will discover a sequence of eigenfunctions and eigenvalues, which you
should name φn(x) and λn. Describe the λn qualitatively (e.g., find an equation for them) but
do not expect to find their exact numerical values. Also, do not bother to evaluate normalization
integrals for φn.

We search for the solution of the initial-boundary value problem as a superposition of solutions
u(x, t) = φ(x)g(t) with separated variables of the heat equation that satisfy the boundary conditions.

Substituting u(x, t) = φ(x)g(t) into the heat equation, we obtain

φ(x)g′(t) = φ′′(x)g(t),

g′(t)
g(t)

=
φ′′(x)
φ(x)

.

Since the left-hand side does not depend on x while the right-hand side does not depend on t, it follows
that

g′(t)
g(t)

=
φ′′(x)
φ(x)

= −λ,

where λ is a constant. Then
g′ = −λg, φ′′ = −λφ.

Conversely, if functions g and φ are solutions of the above ODEs for the same value of λ, then
u(x, t) = φ(x)g(t) is a solution of the heat equation.

Substituting u(x, t) = φ(x)g(t) into the boundary conditions, we get

φ(0)g(t) = 0, φ′(π)g(t) + 2φ(π)g(t) = 0.

It is no loss to assume that g is not identically zero. Then the boundary conditions are satisfied if and
only if φ(0) = 0, φ′(π) + 2φ(π) = 0.

To determine φ, we have an eigenvalue problem

φ′′ = −λφ, φ(0) = 0, φ′(π) + 2φ(π) = 0.

This is a regular Sturm-Liouville eigenvalue problem. If φ is an eigenfunction corresponding to an
eigenvalue λ, then the Rayleigh quotient relation holds:

λ =
−φφ′

∣∣∣π
0

+
∫ π

0
|φ′(x)|2 dx∫ π

0
|φ(x)|2 dx

.
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Note that −φφ′
∣∣π
0
= φ(0)φ′(0) − φ(π)φ′(π) = 2|φ(π)|2. It follows that λ ≥ 0. Moreover, λ > 0 since

constants are not eigenfunctions. Hence all eigenvalues are positive.
For any λ > 0 the general solution of the equation φ′′ = −λφ is

φ(x) = c1 cos(
√
λx) + c2 sin(

√
λx),

where c1, c2 are constants. The boundary condition φ(0) = 0 holds if c1 = 0. Then the condition
φ′(π) + 2φ(π) = 0 holds if

c2

(√
λ cos(

√
λπ) + 2 sin(

√
λπ)

)
= 0.

A nonzero solution exists if
√
λ cos(

√
λπ) + 2 sin(

√
λπ) = 0 =⇒ −1

2

√
λ = tan(

√
λπ).

It follows that the eigenvalues 0 < λ1 < λ2 < . . . are solutions of the equation −1
2

√
λ = tan(

√
λπ),

and the corresponding eigenfunctions are φn(x) = sin(
√
λn x).

The function g is to be determined from the equation g′ = −λg. The general solution is g(t) =
c0e

−λt, where c0 is a constant.
Thus we obtain the following solutions of the heat equation that satisfy the boundary conditions:

un(x, t) = e−λntφn(x) = e−λnt sin(
√
λn x), n = 1, 2, . . .

A superposition of these solutions is a series

u(x, t) =
∑∞

n=1
cne

−λntφn(x) =
∑∞

n=1
cne

−λnt sin(
√
λn x),

where c1, c2, . . . are constants. Substituting the series into the initial condition u(x, 0) = f(x), we get

f(x) =
∑∞

n=1
cnφn(x).

The right-hand side is a generalized Fourier series. Therefore the initial condition is satisfied if the
right-hand side coincides with the generalized Fourier series of the function f , that is, if

cn =

∫ π

0
f(x0)φn(x0) dx0∫ π

0
|φn(x0)|2 dx0

, n = 1, 2, . . .

Problem 5 By the method of your choice, solve the wave equation on the half-line

∂2u

∂t2
=

∂2u

∂x2
(0 < x < ∞, −∞ < t < ∞)

subject to

u(0, t) = 0, u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x).

Fourier’s method: In view of the boundary condition, let us apply the Fourier sine transform
with respect to x to both sides of the equation:

S

[
∂2u

∂t2

]
= S

[
∂2u

∂x2

]
.
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Let U(ω, t) denote the Fourier sine transform of the solution u(x, t):

U(ω, t) = S[u(·, t)](ω) =
2
π

∫ ∞

0
u(x, t) sinωxdx.

Then

S

[
∂2u

∂t2

]
=
∂2U

∂t2
, S

[
∂2u

∂x2

]
=

2
π
u(0, t)ω − ω2U(ω, t) = −ω2U(ω, t).

Hence
∂2U

∂t2
= −ω2U(ω, t).

If ω 6= 0 then the general solution of the latter equation is U(ω, t) = a cosωt+b sinωt, where a = a(ω),
b = b(ω). Applying the Fourier sine transform to the initial conditions, we obtain

U(ω, 0) = F (ω),
∂U

∂t
(ω, 0) = G(ω),

where F = S[f ], G = S[g]. It follows that a(ω) = F (ω), b(ω) = G(ω)/ω.
Now it remains to apply the inverse Fourier sine transform:

u(x, t) = S−1[U(·, t)](x) =
∫ ∞

0

(
F (ω) cosωt+

G(ω)
ω

sinωt
)

sinωxdω,

where
F (ω) =

2
π

∫ ∞

0
f(x0) sinωx0 dx0, G(ω) =

2
π

∫ ∞

0
g(x0) sinωx0 dx0.

D’Alembert’s method: Define f(x) and g(x) for negative x to be the odd extensions of the
functions given for positive x, i.e., f(−x) = −f(x) and g(−x) = −g(x) for all x > 0. By d’Alembert’s
formula, the function

u(x, t) =
1
2
(
f(x+ t) + f(x− t)

)
+

1
2

∫ x+t

x−t
g(x0) dx0

is the solution of the wave equation that satisfies the initial conditions

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x)

on the entire line. Since f and g are odd functions, it follows that u(x, t) is also odd as a function of
x. As a consequence, u(0, t) = 0 for all t. Thus the boundary condition holds as well.

Bonus Problem 6 Solve Problem 5 by a distinctly different method.

See above.

Bonus Problem 7 Find a Green function implementing the solution of Problem 2.

The solution of Problem 2:

u(r, θ) = A0 +
∞∑

n=1

(r
a

)n
(An cosnθ +Bn sinnθ),
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where

A0 =
1
2π

∫ π

−π
f(θ0) dθ0, An =

1
π

∫ π

−π
f(θ0) cosnθ0 dθ0, Bn =

1
π

∫ π

−π
f(θ0) sinnθ0 dθ0, n = 1, 2, . . .

It can be rewritten as
u(r, θ) =

∫ π

−π
G(r, θ; θ0) f(θ0) dθ0,

where

G(r, θ; θ0) =
1
2π

+
1
π

∞∑
n=1

(r
a

)n
(cosnθ cosnθ0 + sinnθ sinnθ0)

is the desired Green function. The expression can be simplified:

G(r, θ; θ0) =
1
2π

+
1
π

∞∑
n=1

(r
a

)n
cosn(θ − θ0)

=
1
2π

+
1
π

∞∑
n=1

(r
a

)n
· e

in(θ−θ0) + e−in(θ−θ0)

2

=
1
2π

∞∑
n=0

(
ra−1ei(θ−θ0)

)n
+

1
2π

∞∑
n=1

(
ra−1e−i(θ−θ0)

)n

=
1
2π

(
1

1− ra−1ei(θ−θ0)
+

ra−1e−i(θ−θ0)

1− ra−1e−i(θ−θ0)

)

=
1
2π

(
a

a− rei(θ−θ0)
+

re−i(θ−θ0)

a− re−i(θ−θ0)

)

=
1
2π

a2 − r2

(a− rei(θ−θ0))(a− re−i(θ−θ0))

=
1
2π

a2 − r2

a2 − 2ar cos(θ − θ0) + r2
.
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