Homework assignment #1 (due Friday, September 8)

Problem 1. Determine the equilibrium temperature distribution for a one-dimensional rod with constant thermal properties ($K_0 = \text{const}$) with the following sources and boundary conditions:

(i) Q = 0, $u(0,t) = u_0$, u(L,t) = 0; (ii) Q = 0, $\frac{\partial u}{\partial x}(0,t) = 0$, $u(L,t) = u_0$; (iii) Q = 0, $u(0,t) = u_0$, $\frac{\partial u}{\partial x}(L,t) = \alpha$; (iv) $Q/K_0 = 1$, $u(0,t) = u_1$, $u(L,t) = u_2$; (v) $Q(x)/K_0 = x^2$, $u(0,t) = u_0$, $\frac{\partial u}{\partial x}(L,t) = 0$; (vi) Q = 0, $u(0,t) = u_0$, $\frac{\partial u}{\partial x}(L,t) = 0$;

Problem 2. Solve the initial value problem for the one-dimensional wave equation on the infinite segment:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad -\infty < x < \infty, \quad t \ge 0$$

with the following initial conditions:

- (i) $u(x,0) = \sin x$, $\frac{\partial u}{\partial t}(x,0) = 0$; (ii) u(x,0) = 0, $\frac{\partial u}{\partial t}(x,0) = \cos x$;
- (iii) $u(x,0) = \sin x$, $\frac{\partial u}{\partial t}(x,0) = \cos x$.

Problem 3. Solve the following initial-boundary value problem for the one-dimensional wave equation on a semi-infinite segment:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad x \ge 0, \quad t \ge 0;$$
$$u(x,0) = \cos x, \quad \frac{\partial u}{\partial t}(x,0) = 0, \quad x \ge 0;$$
$$\frac{\partial u}{\partial x}(0,t) = 0, \quad t \ge 0.$$