Solutions for homework assignment \#2

Problem 1. Show that the equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+Q(u, x, t)
$$

is linear if $Q(u, x, t)=\alpha(x, t) u+\beta(x, t)$ and in addition homogeneous if $\beta(x, t)=0$.
Solution: The equation has the form $\mathcal{L}(u)=\beta(x, t)$, where $\mathcal{L}(u)=\frac{\partial u}{\partial t}-k \frac{\partial^{2} u}{\partial x^{2}}-\alpha(x, t) u$. For any functions u_{1}, u_{2} and any $r_{1}, r_{2} \in \mathbb{R}$ we have $\mathcal{L}\left(r_{1} u_{1}+r_{2} u_{2}\right)=r_{1} \mathcal{L}\left(u_{1}\right)+r_{2} \mathcal{L}\left(u_{2}\right)$. Hence \mathcal{L} is a linear operator. Then $\mathcal{L}(u)=\beta(x, t)$ is a linear equation. If $\beta(x, t)=0$ then the equation is linear homogeneous.

Problem 2. Show that a linear equation is homogeneous if and only if 0 is a solution.
Solution: For any linear operator \mathcal{L} we have that $\mathcal{L}(0)=0$. Indeed, take any element u from the domain of \mathcal{L}. Clearly, $0 u=0$. The linearity of \mathcal{L} implies that $\mathcal{L}(0)=\mathcal{L}(0 u)=0 \cdot \mathcal{L}(u)=0$.

A linear homogeneous equation has the form $\mathcal{L}(u)=0$, where \mathcal{L} is a linear operator. By the above 0 is a solution.

A linear equation has the form $\mathcal{L}(u)=f$, where \mathcal{L} is a linear operator and f is given. If 0 is a solution then $\mathcal{L}(0)=f$. But $\mathcal{L}(0)=0$. Hence $f=0$ and the equation is homogeneous.

Problem 3. Consider the following equation:

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}+u^{2} .
$$

(i) Find a nonzero steady-state (independent of t) solution u_{0} in the half-plane $x>0$;
(ii) show that $2 u_{0}$ is not a solution;
(iii) use u_{0} to show that the equation is not linear.

Solution: (i) Suppose u_{0} is a steady-state solution in the half-plane $x>0$. Then $u_{0}(x, t)=v(x)$, where v is a solution of the $\operatorname{ODE} v^{\prime}(x)+(v(x))^{2}=0$ in the half-line $x>0$. If $v(x) \neq 0$ then $(1 / v)^{\prime}(x)=-v^{\prime}(x) /(v(x))^{2}=1$. Hence either $v=0$ or $1 / v(x)=x+C, C=$ const. In particular, $v(x)=(x+C)^{-1}$ is a nonzero solution in the half-line $x>0$ for any $C \geq 0$. For example, take $C=0$. Then $u_{0}(x, t)=x^{-1}$ is the desired steady-state solution.
(ii) Since u_{0} is a steady-state solution, we have that $\frac{\partial u_{0}}{\partial t}=0$ and $\frac{\partial u_{0}}{\partial x}+u_{0}^{2}=0$. Then $\frac{\partial\left(2 u_{0}\right)}{\partial t}=0$ while $\frac{\partial\left(2 u_{0}\right)}{\partial x}+\left(2 u_{0}\right)^{2}=2 \frac{\partial u_{0}}{\partial x}+4 u_{0}^{2}=2 u_{0}^{2} \neq 0$. Therefore $2 u_{0}$ is not a solution.
(iii) Assume, on the contrary, that the equation can be transformed into the linear form. Since 0 is obviously a solution, the equation is linear homogeneous (see Problem 2). For a linear homogeneous equation, u_{0} is a solution if and only if so is $2 u_{0}$. We have arrived at a contradiction.

Problem 4. Using separation of variables, find a nonzero solution of the equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}-u \quad(k=\text { const }>0)
$$

Solution: We are looking for a solution of the form $u(x, t)=X(x) T(t)$. Substituting this into the equation, we obtain

$$
\begin{gathered}
X(x) T^{\prime}(t)=k X^{\prime \prime}(x) T(t)-X(x) T(t), \\
\frac{T^{\prime}(t)}{T(t)}=k \frac{X^{\prime \prime}(x)}{X(x)}-1 .
\end{gathered}
$$

Since the left-hand side does not depend on x while the right-hand side does not depend on t, it follows that

$$
\frac{T^{\prime}(t)}{T(t)}=k \frac{X^{\prime \prime}(x)}{X(x)}-1=\lambda,
$$

where λ is a constant. Then

$$
T^{\prime}=\lambda T, \quad X^{\prime \prime}=k^{-1}(1+\lambda) X
$$

Conversely, if functions T and X are solutions of the above ODEs for the same value of λ, then $u(x, t)=X(x) T(t)$ is a solution of the PDE. For example, we may take $\lambda=-1, T(t)=e^{-t}$, and $X(x)=x$. Hence $u(x, t)=e^{-t} x$ is the desired solution.

Problem 5. Determine the eigenvalues λ of the following eigenvalue problem:

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0, \quad \phi(0)=0, \quad \frac{d \phi}{d x}(L)=0 .
$$

Analyze three cases: $\lambda>0, \lambda=0, \lambda<0$. You may assume that the eigenvalues are real.
Solution: $\quad \lambda_{n}=\left(\frac{(2 n+1) \pi}{2 L}\right)^{2}, n=0,1,2,3, \ldots$
Detailed solution: Case 1: $\lambda>0$. Here the general solution of the diferential equation is $\phi(x)=C_{1} \cos \mu x+C_{2} \sin \mu x$, where $\lambda=\mu^{2}, \mu>0$, and C_{1}, C_{2} are arbitrary constants. Clearly, $\phi(0)=C_{1}$ and $\phi^{\prime}(L)=-C_{1} \mu \sin \mu L+C_{2} \mu \cos \mu L$. Hence the boundary conditions are satisfied if and only if $C_{1}=0, C_{2} \mu \cos \mu L=0$. A nonzero solution exists if $\mu L=\pi / 2+n \pi, n \in \mathbb{Z}$. That is, if $\mu=(2 n+1) \pi /(2 L), n \in \mathbb{Z}$. Since $\mu>0$, we obtain eigenvalues $\lambda_{n}=\left(\frac{(2 n+1) \pi}{2 L}\right)^{2}, n=0,1,2, \ldots$ The corresponding eigenfunctions are $\phi_{n}(x)=\sin \frac{(2 n+1) \pi x}{2 L}$.

Case 2: $\lambda=0$. The general solution of the equation is $\phi(x)=C_{1}+C_{2} x$, where C_{1}, C_{2} are constants. Since $\phi(0)=C_{1}$ and $\phi^{\prime}(L)=C_{2}$, the boundary value problem has only zero solution. Hence 0 is not an eigenvalue.

Case 3: $\lambda<0$. The general solution of the equation is $\phi(x)=C_{1} \cosh \mu x+C_{2} \sinh \mu x$, where $\lambda=$ $-\mu^{2}, \mu>0$, and C_{1}, C_{2} are constants. We have that $\phi(0)=C_{1}$ and $\phi^{\prime}(L)=C_{1} \mu \sinh \mu L+C_{2} \mu \cosh \mu L$. The boundary conditions are satisfied if and only if $C_{1}=0$ and $C_{2} \mu \cosh \mu L=0$. Since cosh is a positive function, it follows that the boundary value problem has only zero solution. Hence there are no negative eigenvalues.

Problem 6. Solve the initial-boundary value problem for the heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, \quad t>0
$$

with the following initial and boundary conditions:
(i) $\quad u(x, 0)=6 \sin \frac{9 \pi x}{L}, \quad u(0, t)=u(L, t)=0$;
(ii) $u(x, 0)=3 \sin \frac{\pi x}{L}-\sin \frac{3 \pi x}{L}, \quad u(0, t)=u(L, t)=0$;
(iii) $u(x, 0)=6+4 \cos \frac{3 \pi x}{L}, \quad \frac{\partial u}{\partial t}(0, t)=\frac{\partial u}{\partial t}(L, t)=0$;
(iv) $u(x, 0)=-3 \cos \frac{8 \pi x}{L}, \quad \frac{\partial u}{\partial t}(0, t)=\frac{\partial u}{\partial t}(L, t)=0$.

Solution: (i) $u(x, t)=6 \exp \left(-\frac{81 \pi^{2}}{L^{2}} k t\right) \sin \frac{9 \pi x}{L}$;
(ii) $u(x, t)=3 \exp \left(-\frac{\pi^{2}}{L^{2}} k t\right) \sin \frac{\pi x}{L}-\exp \left(-\frac{9 \pi^{2}}{L^{2}} k t\right) \sin \frac{3 \pi x}{L}$;
(iii) $u(x, t)=6+4 \exp \left(-\frac{9 \pi^{2}}{L^{2}} k t\right) \cos \frac{3 \pi x}{L}$; (iv) $u(x, t)=-3 \exp \left(-\frac{64 \pi^{2}}{L^{2}} k t\right) \cos \frac{8 \pi x}{L}$.

Detailed solution: The separation of variables provides the following solution. To solve Problems 6(i) and 6(ii), we have to expand the initial data into a series

$$
\sum_{n=1}^{\infty} c_{n} \phi_{n}
$$

where c_{n} are constant coefficients and $\phi_{n}(x)=\sin \frac{n \pi x}{L}$ are eigenfunctions of the eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(L)=0
$$

Then the solution is

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n} k t} \phi_{n}(x),
$$

where $\lambda_{n}=(n \pi / L)^{2}$ are the corresponding eigenvalues.
To solve Problems 6(iii) and 6(iv), we have to expand the initial data into a series

$$
\sum_{n=0}^{\infty} c_{n} \psi_{n}
$$

where c_{n} are constant coefficients, $\psi_{0}=1$ and $\psi_{n}(x)=\cos \frac{n \pi x}{L}, n \geq 1$ are eigenfunctions of the eigenvalue problem

$$
\psi^{\prime \prime}=-\lambda \psi, \quad \psi^{\prime}(0)=\psi^{\prime}(L)=0
$$

Then the solution is

$$
u(x, t)=\sum_{n=0}^{\infty} c_{n} e^{-\lambda_{n} k t} \psi_{n}(x),
$$

where $\lambda_{n}=(n \pi / L)^{2}$ are the corresponding eigenvalues.
In each case, the initial data are already expanded as we need (moreover, the expansion is finite).
Problem 7. Show that all solutions of Problem 6 uniformly approach steady-state solutions as $t \rightarrow \infty$.

Solution: Let $u_{1}, u_{2}, u_{3}, u_{4}$ be solutions of Problems 6(i), 6(ii), 6 (iii), 6 (iv), respectively. We have that $\left|u_{1}(x, t)\right| \leq 6 \exp \left(-\frac{81 \pi^{2}}{L^{2}} k t\right),\left|u_{2}(x, t)\right| \leq 3 \exp \left(-\frac{\pi^{2}}{L^{2}} k t\right)+\exp \left(-\frac{9 \pi^{2}}{L^{2}} k t\right),\left|u_{3}(x, t)-6\right| \leq$ $4 \exp \left(-\frac{9 \pi^{2}}{L^{2}} k t\right),\left|u_{4}(x, t)\right| \leq 3 \exp \left(-\frac{64 \pi^{2}}{L^{2}} k t\right)$.

Hence, as $t \rightarrow \infty$, the solutions u_{1}, u_{2}, u_{4} of the heat equation uniformly approach the steady-state solution $u=0$ while u_{3} approaches the steady-state solution $u=6$.

