Homework assignment \#3

(due Friday, September 22)

Problem 1. For the following functions, sketch the Fourier series of $f(x)$ (on the interval $-L \leq x \leq L)$ and determine the Fourier coefficients:
(i) $f(x)=e^{-x}$;
(ii) $f(x)= \begin{cases}1, & x \geq 0, \\ 0, & x<0 .\end{cases}$

Problem 2. For the following functions, sketch $f(x)$, the Fourier series of $f(x)$, the Fourier sine series of $f(x)$, and the Fourier cosine series of $f(x)$:
(i) $f(x)=1$;
(ii) $f(x)=1+x$;
(iii) $f(x)= \begin{cases}x, & x<0, \\ 1+x, & x \geq 0 ;\end{cases}$
(iv) $f(x)=e^{x}$;
(v) $f(x)= \begin{cases}2, & x \leq 0, \\ e^{-x}, & x>0 .\end{cases}$

Problem 3. Sketch the Fourier sine series of $f(x)=x$. Also, roughly sketch the sum of a (large) finite number of nonzero terms of the Fourier sine series.

Problem 4. (i) Consider a function $f(x)$ which is even around $x=L / 2$. Show that the odd coefficients (n odd) of the Fourier cosine series of $f(x)$ on $0 \leq x \leq L$ are zero.
(ii) Explain the result of part (i) by considering a Fourier cosine series of $f(x)$ on the interval $0 \leq x \leq L / 2$.

Problem 5. Fourier series can be defined on other intervals besides $-L \leq x \leq L$. Suppose that a smooth function $g(y)$ is defined for $a \leq y \leq b$. Represent $g(y)$ using periodic trigonometric functions with period $b-a$. Determine formulas for the coefficients.

Hint: use the linear transformation $y=\frac{a+b}{2}+\frac{b-a}{2 L} x$.

