Homework assignment \#4 (due Friday, October 6)

Problem 1. Solve Laplace's equation inside a rectangle $0 \leq x \leq L, 0 \leq y \leq H$, with the following boundary conditions:

$$
\frac{\partial u}{\partial x}(0, y)=0, \quad \frac{\partial u}{\partial x}(L, y)=0, \quad u(x, 0)=0, \quad u(x, H)=f(x)
$$

Problem 2. Solve Laplace's equation inside a semicircle of radius $a(0<r<a, 0<\theta<\pi)$ subject to the boundary conditions: $u=0$ on the diameter and $u(a, \theta)=g(\theta)$.

Problem 3. Solve Laplace's equation inside a 90° sector of a circular annulus ($a<r<b$, $0<\theta<\pi / 2)$ subject to the boundary conditions:

$$
u(r, 0)=0, \quad u(r, \pi / 2)=0, \quad u(a, \theta)=0, \quad u(b, \theta)=f(\theta)
$$

Problem 4. Consider the heat equation in a two-dimensional rectangular region, $0<x<$ $L, 0<y<H$,

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

subject to the initial condition $u(x, y, 0)=f(x, y)$.
Solve the initial-boundary value problem and analyze the temperature as $t \rightarrow \infty$ if the boundary conditions are:

$$
\frac{\partial u}{\partial x}(0, y, t)=0, \quad \frac{\partial u}{\partial x}(L, y, t)=0, \quad \frac{\partial u}{\partial y}(x, 0, t)=0, \quad \frac{\partial u}{\partial y}(x, H, t)=0
$$

Problem 5. Consider the wave equation for a vibrating rectangular membrane ($0<x<L$, $0<y<H$)

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

subject to the initial conditions $u(x, y, 0)=0$ and $\frac{\partial u}{\partial t}(x, y, 0)=f(x, y)$.
Solve the initial-boundary value problem if

$$
\frac{\partial u}{\partial x}(0, y, t)=0, \quad \frac{\partial u}{\partial x}(L, y, t)=0, \quad \frac{\partial u}{\partial y}(x, 0, t)=0, \quad \frac{\partial u}{\partial y}(x, H, t)=0
$$

