Homework assignment #4(due Friday, October 6)

Problem 1. Solve Laplace's equation inside a rectangle $0 \le x \le L$, $0 \le y \le H$, with the following boundary conditions:

$$\frac{\partial u}{\partial x}(0,y) = 0,$$
 $\frac{\partial u}{\partial x}(L,y) = 0,$ $u(x,0) = 0,$ $u(x,H) = f(x).$

Problem 2. Solve Laplace's equation inside a semicircle of radius a ($0 < r < a, 0 < \theta < \pi$) subject to the boundary conditions: u = 0 on the diameter and $u(a, \theta) = g(\theta)$.

Problem 3. Solve Laplace's equation inside a 90° sector of a circular annulus (a < r < b, $0 < \theta < \pi/2$) subject to the boundary conditions:

$$u(r,0) = 0,$$
 $u(r,\pi/2) = 0,$ $u(a,\theta) = 0,$ $u(b,\theta) = f(\theta).$

L, 0 < y < H,

$$\frac{\partial u}{\partial t} = k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

subject to the initial condition u(x, y, 0) = f(x, y).

Solve the initial-boundary value problem and analyze the temperature as $t \to \infty$ if the boundary conditions are:

$$\frac{\partial u}{\partial x}(0,y,t) = 0, \qquad \frac{\partial u}{\partial x}(L,y,t) = 0, \qquad \frac{\partial u}{\partial y}(x,0,t) = 0, \qquad \frac{\partial u}{\partial y}(x,H,t) = 0.$$

Problem 5. Consider the wave equation for a vibrating rectangular membrane (0 < x < L)0 < y < H

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

subject to the initial conditions u(x, y, 0) = 0 and $\frac{\partial u}{\partial t}(x, y, 0) = f(x, y)$. Solve the initial-boundary value problem if

$$\frac{\partial u}{\partial x}(0,y,t) = 0, \qquad \frac{\partial u}{\partial x}(L,y,t) = 0, \qquad \frac{\partial u}{\partial y}(x,0,t) = 0, \qquad \frac{\partial u}{\partial y}(x,H,t) = 0.$$