Solutions for homework assignment \#4

Problem 1. Solve Laplace's equation inside a rectangle $0 \leq x \leq L, 0 \leq y \leq H$, with the following boundary conditions:

$$
\frac{\partial u}{\partial x}(0, y)=0, \quad \frac{\partial u}{\partial x}(L, y)=0, \quad u(x, 0)=0, \quad u(x, H)=f(x)
$$

Solution:

$$
u(x, y)=b_{0} \frac{y}{H}+\sum_{n=1}^{\infty} b_{n}\left(\sinh \frac{n \pi H}{L}\right)^{-1} \sinh \frac{n \pi y}{L} \cos \frac{n \pi x}{L},
$$

where

$$
b_{0}+\sum_{n=1}^{\infty} b_{n} \cos \frac{n \pi x}{L}
$$

is the Fourier cosine series of the function $f(x)$ on $[0, L]$, that is,

$$
b_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, \quad b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n=1,2, \ldots
$$

Detailed solution: We search for the solution of the boundary value problem as a superposition of solutions $u(x, y)=\phi(x) h(y)$ with separated variables of Laplace's equation that satisfy the three homogeneous boundary conditions.

Substituting $u(x, y)=\phi(x) h(y)$ into Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

we obtain

$$
\begin{gathered}
\phi^{\prime \prime}(x) h(y)+\phi(x) h^{\prime \prime}(y)=0, \\
\frac{\phi^{\prime \prime}(x)}{\phi(x)}=-\frac{h^{\prime \prime}(y)}{h(y)} .
\end{gathered}
$$

Since the left-hand side does not depend on y while the right-hand side does not depend on x, it follows that

$$
\frac{\phi^{\prime \prime}(x)}{\phi(x)}=-\frac{h^{\prime \prime}(y)}{h(y)}=-\lambda,
$$

where λ is a constant. Then

$$
\phi^{\prime \prime}=-\lambda \phi, \quad h^{\prime \prime}=\lambda h .
$$

Conversely, if functions ϕ and h are solutions of the above ODEs for the same value of λ, then $u(x, y)=\phi(x) h(y)$ is a solution of Laplace's equation.

Substituting $u(x, y)=\phi(x) h(y)$ into the homogeneous boundary conditions, we get

$$
\phi^{\prime}(0) h(y)=0, \quad \phi^{\prime}(L) h(y)=0, \quad \phi(x) h(0)=0 .
$$

It is no loss to assume that neither ϕ nor h is identically zero. Then the boundary conditions are satisfied if and only if $\phi^{\prime}(0)=\phi^{\prime}(L)=0, h(0)=0$.

To determine ϕ, we have an eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi^{\prime}(0)=\phi^{\prime}(L)=0 .
$$

This problem has eigenvalues $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=0,1,2, \ldots$. The corresponding eigenfunctions are $\phi_{0}=1$ and $\phi_{n}(x)=\cos \frac{n \pi x}{L}, n=1,2, \ldots$.

The function h is to be determined from the equation $h^{\prime \prime}=\lambda h$ and the boundary condition $h(0)=0$. We may assume that λ is one of the above eigenvalues so that $\lambda \geq 0$. If $\lambda=0$ then the general solution of the equation is $h(y)=c_{1}+c_{2} y$, where c_{1}, c_{2} are constants. If $\lambda>0$ then the general solution is $h(y)=c_{1} \cosh \mu y+c_{2} \sinh \mu y$, where $\mu=\sqrt{\lambda}$ and c_{1}, c_{2} are constants. In both cases, the boundary condition $h(0)=0$ holds if $c_{1}=0$.

Thus we obtain the following solutions of Laplace's equation satisfying the three homogeneous boundary conditions:

$$
u_{0}(x, y)=y, \quad u_{n}(x, y)=\sinh \frac{n \pi y}{L} \cos \frac{n \pi x}{L}, n=1,2, \ldots
$$

A superposition of these solutions is a series

$$
u(x, y)=c_{0} y+\sum_{n=1}^{\infty} c_{n} \sinh \frac{n \pi y}{L} \cos \frac{n \pi x}{L}
$$

where $c_{0}, c_{1}, c_{2}, \ldots$ are constants. Substituting the series into the boundary condition $u(x, H)=f(x)$, we get

$$
f(x)=c_{0} H+\sum_{n=1}^{\infty} c_{n} \sinh \frac{n \pi H}{L} \cos \frac{n \pi x}{L} .
$$

The right-hand side is a Fourier cosine series on the interval $[0, L]$. Therefore the boundary condition is satisfied if the right-hand side coincides with the Fourier cosine series

$$
b_{0}+\sum_{n=1}^{\infty} b_{n} \cos \frac{n \pi x}{L}
$$

of the function $f(x)$ on $[0, L]$. Hence

$$
c_{0}=\frac{b_{0}}{H}, \quad c_{n}=\frac{b_{n}}{\sinh \frac{n \pi H}{L}}, \quad n=1,2, \ldots,
$$

where

$$
b_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, \quad b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n=1,2, \ldots
$$

Problem 2. Solve Laplace's equation inside a semicircle of radius $a(0<r<a, 0<\theta<\pi)$ subject to the boundary conditions: $u=0$ on the diameter and $u(a, \theta)=g(\theta)$.

Solution:

$$
u(r, \theta)=\sum_{n=1}^{\infty} b_{n}\left(\frac{r}{a}\right)^{n} \sin n \theta,
$$

where

$$
\sum_{n=1}^{\infty} b_{n} \sin n \theta
$$

is the Fourier sine series of the function $g(\theta)$ on $[0, \pi]$, that is,

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} g(\theta) \sin n \theta d \theta, \quad n=1,2, \ldots
$$

Detailed solution: Laplace's equation in polar coordinates (r, θ) :

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

The boundary condition $u=0$ on the diameter gives rise to three boundary conditions in polar coordinates:

$$
\begin{gathered}
u(r, 0)=u(r, \pi)=0 \quad(0<r<a), \\
u(0, \theta)=0 \quad(0<\theta<\pi)
\end{gathered}
$$

(the latter condition means that $u=0$ at the origin).
We search for the solution of the boundary value problem as a superposition of solutions $u(r, \theta)=$ $h(r) \phi(\theta)$ with separated variables of Laplace's equation that satisfy the above homogeneous boundary conditions.

Substituting $u(r, \theta)=h(r) \phi(\theta)$ into Laplace's equation, we obtain

$$
\begin{gathered}
h^{\prime \prime}(r) \phi(\theta)+\frac{1}{r} h^{\prime}(r) \phi(\theta)+\frac{1}{r^{2}} h(r) \phi^{\prime \prime}(\theta)=0, \\
\frac{r^{2} h^{\prime \prime}(r)+r h^{\prime}(r)}{h(r)}=-\frac{\phi^{\prime \prime}(\theta)}{\phi(\theta)} .
\end{gathered}
$$

Since the left-hand side does not depend on θ while the right-hand side does not depend on r, it follows that

$$
\frac{r^{2} h^{\prime \prime}(r)+r h^{\prime}(r)}{h(r)}=-\frac{\phi^{\prime \prime}(\theta)}{\phi(\theta)}=\lambda,
$$

where λ is a constant. Then

$$
r^{2} h^{\prime \prime}(r)+r h^{\prime}(r)=\lambda h(r), \quad \phi^{\prime \prime}=-\lambda \phi
$$

Conversely, if functions h and ϕ are solutions of the above ODEs for the same value of λ, then $u(r, \theta)=h(r) \phi(\theta)$ is a solution of Laplace's equation in polar coordinates.

Substituting $u(r, \theta)=h(r) \phi(\theta)$ into the homogeneous boundary conditions, we get

$$
h(r) \phi(0)=0, \quad h(r) \phi(\pi)=0, \quad h(0) \phi(\theta)=0 .
$$

It is no loss to assume that neither h nor ϕ is identically zero. Then the boundary conditions are satisfied if and only if $\phi(0)=\phi(\pi)=0, h(0)=0$.

To determine ϕ, we have an eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(\pi)=0 .
$$

This problem has eigenvalues $\lambda_{n}=n^{2}, n=1,2, \ldots$. The corresponding eigenfunctions are $\phi_{n}(\theta)=$ $\sin n \theta, n=1,2, \ldots$.

The function h is to be determined from the equation $r^{2} h^{\prime \prime}+r h^{\prime}=\lambda h$ and the boundary condition $h(0)=0$. We may assume that λ is one of the above eigenvalues so that $\lambda>0$. Then the general solution of the equation is $h(r)=c_{1} r^{\mu}+c_{2} r^{-\mu}$, where $\mu=\sqrt{\lambda}$ and c_{1}, c_{2} are constants. The boundary condition $h(0)=0$ holds if $c_{2}=0$.

Thus we obtain the following solutions of Laplace's equation satisfying the three homogeneous boundary conditions:

$$
u_{n}(r, \theta)=r^{n} \sin n \theta, \quad n=1,2, \ldots
$$

A superposition of these solutions is a series

$$
u(r, \theta)=\sum_{n=1}^{\infty} c_{n} r^{n} \sin n \theta
$$

where c_{1}, c_{2}, \ldots are constants. Substituting the series into the boundary condition $u(a, \theta)=g(\theta)$, we get

$$
g(\theta)=\sum_{n=1}^{\infty} c_{n} a^{n} \sin n \theta .
$$

The right-hand side is a Fourier sine series on the interval $[0, \pi]$. Therefore the boundary condition is satisfied if the right-hand side coincides with the Fourier sine series

$$
\sum_{n=1}^{\infty} b_{n} \sin n \theta
$$

of the function $g(\theta)$ on $[0, \pi]$. Hence

$$
c_{n}=b_{n} a^{-n}, \quad n=1,2, \ldots,
$$

where

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} g(\theta) \sin n \theta d \theta, \quad n=1,2, \ldots
$$

Problem 3. Solve Laplace's equation inside a 90° sector of a circular annulus ($a<r<b$, $0<\theta<\pi / 2)$ subject to the boundary conditions:

$$
u(r, 0)=0, \quad u(r, \pi / 2)=0, \quad u(a, \theta)=0, \quad u(b, \theta)=f(\theta) .
$$

Solution:

$$
u(r, \theta)=\sum_{n=1}^{\infty} b_{n} \frac{(r / a)^{2 n}-(a / r)^{2 n}}{(b / a)^{2 n}-(a / b)^{2 n}} \sin 2 n \theta,
$$

where

$$
\sum_{n=1}^{\infty} b_{n} \sin 2 n \theta
$$

is the Fourier sine series of the function $f(\theta)$ on $[0, \pi / 2]$, that is,

$$
b_{n}=\frac{4}{\pi} \int_{0}^{\pi / 2} f(\theta) \sin 2 n \theta d \theta, \quad n=1,2, \ldots
$$

Detailed solution: We search for the solution of the boundary value problem as a superposition of solutions $u(r, \theta)=h(r) \phi(\theta)$ with separated variables of Laplace's equation that satisfy the three homogeneous boundary conditions.

As shown in the solution of Problem 2, $u(r, \theta)=h(r) \phi(\theta)$ is a solution of Laplace's equation in polar coordinates if functions h and ϕ are solutions of the equations

$$
r^{2} h^{\prime \prime}(r)+r h^{\prime}(r)=\lambda h(r), \quad \phi^{\prime \prime}=-\lambda \phi
$$

for the same constant λ.
Substituting $u(r, \theta)=h(r) \phi(\theta)$ into the homogeneous boundary conditions, we get

$$
h(r) \phi(0)=0, \quad h(r) \phi(\pi / 2)=0, \quad h(a) \phi(\theta)=0 .
$$

It is no loss to assume that neither h nor ϕ is identically zero. Then the boundary conditions are satisfied if and only if $\phi(0)=\phi(\pi / 2)=0, h(a)=0$.

To determine ϕ, we have an eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(\pi / 2)=0 .
$$

This problem has eigenvalues $\lambda_{n}=(2 n)^{2}, n=1,2, \ldots$. The corresponding eigenfunctions are $\phi_{n}(\theta)=$ $\sin 2 n \theta, n=1,2, \ldots$.

The function h is to be determined from the equation $r^{2} h^{\prime \prime}+r h^{\prime}=\lambda h$ and the boundary condition $h(a)=0$. We may assume that λ is one of the above eigenvalues so that $\lambda>0$. Then the general solution of the equation is $h(r)=c_{1} r^{\mu}+c_{2} r^{-\mu}$, where $\mu=\sqrt{\lambda}$ and c_{1}, c_{2} are constants. The boundary condition $h(a)=0$ holds if $c_{1} a^{\mu}+c_{2} a^{-\mu}=0$, which implies that $h(r)=c_{0}\left((r / a)^{\mu}-(r / a)^{-\mu}\right)$, where c_{0} is a constant.

Thus we obtain the following solutions of Laplace's equation satisfying the three homogeneous boundary conditions:

$$
u_{n}(r, \theta)=\left(\left(\frac{r}{a}\right)^{2 n}-\left(\frac{a}{r}\right)^{2 n}\right) \sin 2 n \theta, \quad n=1,2, \ldots
$$

A superposition of these solutions is a series

$$
u(r, \theta)=\sum_{n=1}^{\infty} c_{n}\left(\left(\frac{r}{a}\right)^{2 n}-\left(\frac{a}{r}\right)^{2 n}\right) \sin 2 n \theta
$$

where c_{1}, c_{2}, \ldots are constants. Substituting the series into the boundary condition $u(b, \theta)=f(\theta)$, we get

$$
f(\theta)=\sum_{n=1}^{\infty} c_{n}\left(\left(\frac{b}{a}\right)^{2 n}-\left(\frac{a}{b}\right)^{2 n}\right) \sin 2 n \theta
$$

The right-hand side is a Fourier sine series on the interval $[0, \pi / 2]$. Therefore the boundary condition is satisfied if the right-hand side coincides with the Fourier sine series

$$
\sum_{n=1}^{\infty} b_{n} \sin 2 n \theta
$$

of the function $f(\theta)$ on $[0, \pi / 2]$. Hence

$$
c_{n}=\frac{b_{n}}{(b / a)^{2 n}-(a / b)^{2 n}}, \quad n=1,2, \ldots
$$

where

$$
b_{n}=\frac{4}{\pi} \int_{0}^{\pi / 2} f(\theta) \sin 2 n \theta d \theta, \quad n=1,2, \ldots
$$

Problem 4. Consider the heat equation in a two-dimensional rectangular region, $0<x<$ $L, 0<y<H$,

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

subject to the initial condition $u(x, y, 0)=f(x, y)$.
Solve the initial-boundary value problem and analyze the temperature as $t \rightarrow \infty$ if the boundary conditions are:

$$
\frac{\partial u}{\partial x}(0, y, t)=0, \quad \frac{\partial u}{\partial x}(L, y, t)=0, \quad \frac{\partial u}{\partial y}(x, 0, t)=0, \quad \frac{\partial u}{\partial y}(x, H, t)=0
$$

Solution:

$$
u(x, y, t)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{n m} \exp \left(-\left((n \pi / L)^{2}+(m \pi / H)^{2}\right) k t\right) \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H}
$$

where

$$
\begin{gathered}
c_{00}=\frac{1}{L H} \int_{0}^{L} \int_{0}^{H} f(x, y) d x d y \\
c_{n 0}=\frac{2}{L H} \int_{0}^{L} \int_{0}^{H} f(x, y) \cos \frac{n \pi x}{L} d x d y, \quad n \geq 1, \\
c_{0 m}=\frac{2}{L H} \int_{0}^{L} \int_{0}^{H} f(x, y) \cos \frac{m \pi y}{H} d x d y, \quad m \geq 1, \\
c_{n m}=\frac{4}{L H} \int_{0}^{L} \int_{0}^{H} f(x, y) \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H} d x d y, \quad n, m \geq 1
\end{gathered}
$$

As $t \rightarrow \infty$, the temperature uniformly approaches the constant c_{00}, the mean value of $f(x, y)$ over the rectangle.

Detailed solution: We search for the solution of the initial-boundary value problem as a superposition of solutions $u(x, y, t)=\phi(x) h(y) G(t)$ with separated variables of the heat equation that satisfy the boundary conditions.

Substituting $u(x, y, t)=\phi(x) h(y) G(t)$ into the heat equation, we obtain

$$
\begin{aligned}
& \phi(x) h(y) G^{\prime}(t)=k\left(\phi^{\prime \prime}(x) h(y) G(t)+\phi(x) h^{\prime \prime}(y) G(t)\right) \\
& \frac{G^{\prime}(t)}{k G(t)}=\frac{\phi^{\prime \prime}(x)}{\phi(x)}+\frac{h^{\prime \prime}(y)}{h(y)}
\end{aligned}
$$

Since any of the expressions $\frac{G^{\prime}(t)}{k G(t)}, \frac{\phi^{\prime \prime}(x)}{\phi(x)}$, and $\frac{h^{\prime \prime}(y)}{h(y)}$ depend on one of the variables x, y, t and does not depend on the other two, it follows that each of these expressions is constant. Hence

$$
\frac{\phi^{\prime \prime}(x)}{\phi(x)}=-\lambda, \quad \frac{h^{\prime \prime}(y)}{h(y)}=-\mu, \quad \frac{G^{\prime}(t)}{k G(t)}=-(\lambda+\mu)
$$

where λ and μ are constants. Then

$$
\phi^{\prime \prime}=-\lambda \phi, \quad h^{\prime \prime}=-\mu h, \quad G^{\prime}=-(\lambda+\mu) k G
$$

Conversely, if functions ϕ, h, and G are solutions of the above ODEs for the same values of λ and μ, then $u(x, y, t)=\phi(x) h(y) G(t)$ is a solution of the heat equation.

Substituting $u(x, y, t)=\phi(x) h(y) G(t)$ into the boundary conditions, we get

$$
\phi^{\prime}(0) h(y) G(t)=\phi^{\prime}(L) h(y) G(t)=0, \quad \phi(x) h^{\prime}(0) G(t)=\phi(x) h^{\prime}(H) G(t)=0
$$

It is no loss to assume that neither ϕ nor h nor G is identically zero. Then the boundary conditions are satisfied if and only if $\phi^{\prime}(0)=\phi^{\prime}(L)=0, h^{\prime}(0)=h^{\prime}(H)=0$.

To determine ϕ, we have an eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi^{\prime}(0)=\phi^{\prime}(L)=0
$$

This problem has eigenvalues $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=0,1,2, \ldots$. The corresponding eigenfunctions are $\phi_{0}=1$ and $\phi_{n}(x)=\cos \frac{n \pi x}{L}, n=1,2, \ldots$.

To determine h, we have another eigenvalue problem

$$
h^{\prime \prime}=-\mu h, \quad h^{\prime}(0)=h^{\prime}(H)=0
$$

This problem has eigenvalues $\mu_{m}=\left(\frac{m \pi}{H}\right)^{2}, m=0,1,2, \ldots$. The corresponding eigenfunctions are $\psi_{0}=1$ and $\psi_{m}(y)=\cos \frac{m \pi y}{H}, m=1,2, \ldots$.

The function G is to be determined from the equation $G^{\prime}=-(\lambda+\mu) k G$. The general solution of this equation is $G(t)=c_{0} e^{-(\lambda+\mu) k t}$, where c_{0} is a constant.

Thus we obtain the following solutions of the heat equation satisfying the boundary conditions:

$$
\begin{aligned}
u_{n m}(x, y, t) & =e^{-\left(\lambda_{n}+\mu_{m}\right) k t} \phi_{n}(x) \psi_{m}(y) \\
& =\exp \left(-\left((n \pi / L)^{2}+(m \pi / H)^{2}\right) k t\right) \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H}, \quad n, m=0,1,2, \ldots
\end{aligned}
$$

A superposition of these solutions is a double series

$$
u(x, y, t)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{n m} \exp \left(-\left((n \pi / L)^{2}+(m \pi / H)^{2}\right) k t\right) \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H},
$$

where $c_{n m}$ are constants. Substituting the series into the initial condition $u(x, y, 0)=f(x, y)$, we get

$$
f(x, y)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{n m} \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{n m} \phi_{n}(x) \psi_{m}(y) .
$$

To determine the coefficients $c_{n m}$, we multiply both sides by $\phi_{N}(x) \psi_{M}(y)(N, M \geq 0)$ and integrate over the rectangle $0 \leq x \leq L, 0 \leq y \leq H$. We assume that the series may be integrated term-by-term:

$$
\begin{gathered}
\int_{0}^{L} \int_{0}^{H} f(x, y) \phi_{N}(x) \psi_{M}(y) d x d y=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{n m} \int_{0}^{L} \int_{0}^{H} \phi_{N}(x) \psi_{M}(y) \phi_{n}(x) \psi_{m}(y) d x d y \\
=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{n m} \int_{0}^{L} \phi_{N}(x) \phi_{n}(x) d x \int_{0}^{H} \psi_{M}(y) \psi_{m}(y) d y
\end{gathered}
$$

Using the orthogonality relations

$$
\begin{aligned}
& \int_{0}^{L} \phi_{N}(x) \phi_{n}(x) d x=0, \quad N \neq n \\
& \int_{0}^{H} \psi_{M}(y) \psi_{m}(y) d y=0, \quad M \neq m
\end{aligned}
$$

we obtain

$$
\int_{0}^{L} \int_{0}^{H} f(x, y) \phi_{N}(x) \psi_{M}(y) d x d y=c_{N M} \int_{0}^{L} \phi_{N}^{2}(x) d x \int_{0}^{H} \psi_{M}^{2}(y) d y
$$

It remains to recall that

$$
\int_{0}^{L} \phi_{0}^{2}(x) d x=L, \quad \int_{0}^{L} \phi_{N}^{2}(x) d x=\frac{L}{2}, \quad N \geq 1
$$

and, similarly,

$$
\int_{0}^{H} \psi_{0}^{2}(x) d x=H, \quad \int_{0}^{H} \psi_{M}^{2}(x) d x=\frac{H}{2}, \quad M \geq 1
$$

In the double series expansion of $u(x, y, t)$, each term contains an exponential factor $e^{-\left(\lambda_{n}+\mu_{m}\right) k t}$, which is decaying as $t \rightarrow \infty$ except for the case $n=m=0$ when this factor is equal to 1 . It follows that, as $t \rightarrow \infty$, the solution $u(x, y, t)$ uniformly converges to the constant c_{00} :

$$
\lim _{t \rightarrow \infty} u(x, y, t)=c_{00}=\frac{1}{L H} \int_{0}^{L} \int_{0}^{H} f(x, y) d x d y
$$

Problem 5. Consider the wave equation for a vibrating rectangular membrane ($0<x<L$, $0<y<H$)

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

subject to the initial conditions $u(x, y, 0)=0$ and $\frac{\partial u}{\partial t}(x, y, 0)=f(x, y)$.
Solve the initial-boundary value problem if

$$
\frac{\partial u}{\partial x}(0, y, t)=0, \quad \frac{\partial u}{\partial x}(L, y, t)=0, \quad \frac{\partial u}{\partial y}(x, 0, t)=0, \quad \frac{\partial u}{\partial y}(x, H, t)=0 .
$$

Solution:

$$
u(x, y, t)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} b_{n m} \frac{\sin \left(\sqrt{(n \pi / L)^{2}+(m \pi / H)^{2}} c t\right)}{\sqrt{(n \pi / L)^{2}+(m \pi / H)^{2}} c} \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H}
$$

where $b_{n m}$ are coefficients of the expansion

$$
f(x, y)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} b_{n m} \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H} .
$$

The formulas for $b_{n m}$ are obtained in the solution of Problem 4.
Detailed solution: We search for the solution of the initial-boundary value problem as a superposition of solutions $u(x, y, t)=\phi(x) h(y) G(t)$ with separated variables of the wave equation that satisfy the boundary conditions.

Substituting $u(x, y, t)=\phi(x) h(y) G(t)$ into the wave equation, we obtain

$$
\begin{gathered}
\phi(x) h(y) G^{\prime \prime}(t)=c^{2}\left(\phi^{\prime \prime}(x) h(y) G(t)+\phi(x) h^{\prime \prime}(y) G(t)\right), \\
\frac{G^{\prime \prime}(t)}{c^{2} G(t)}=\frac{\phi^{\prime \prime}(x)}{\phi(x)}+\frac{h^{\prime \prime}(y)}{h(y)} .
\end{gathered}
$$

Since any of the expressions $\frac{G^{\prime \prime}(t)}{c^{2} G(t)}, \frac{\phi^{\prime \prime}(x)}{\phi(x)}$, and $\frac{h^{\prime \prime}(y)}{h(y)}$ depend on one of the variables x, y, t and does not depend on the other two, it follows that each of these expressions is constant. Hence

$$
\frac{\phi^{\prime \prime}(x)}{\phi(x)}=-\lambda, \quad \frac{h^{\prime \prime}(y)}{h(y)}=-\mu, \quad \frac{G^{\prime \prime}(t)}{c^{2} G(t)}=-(\lambda+\mu)
$$

where λ and μ are constants. Then

$$
\phi^{\prime \prime}=-\lambda \phi, \quad h^{\prime \prime}=-\mu h, \quad G^{\prime \prime}=-(\lambda+\mu) c^{2} G .
$$

Conversely, if functions ϕ, h, and G are solutions of the above ODEs for the same values of λ and μ, then $u(x, y, t)=\phi(x) h(y) G(t)$ is a solution of the wave equation.

Substituting $u(x, y, t)=\phi(x) h(y) G(t)$ into the boundary conditions, we get

$$
\phi^{\prime}(0) h(y) G(t)=\phi^{\prime}(L) h(y) G(t)=0, \quad \phi(x) h^{\prime}(0) G(t)=\phi(x) h^{\prime}(H) G(t)=0
$$

It is no loss to assume that neither ϕ nor h nor G is identically zero. Then the boundary conditions are satisfied if and only if $\phi^{\prime}(0)=\phi^{\prime}(L)=0, h^{\prime}(0)=h^{\prime}(H)=0$.

To determine ϕ, we have an eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi^{\prime}(0)=\phi^{\prime}(L)=0 .
$$

This problem has eigenvalues $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=0,1,2, \ldots$. The corresponding eigenfunctions are $\phi_{0}=1$ and $\phi_{n}(x)=\cos \frac{n \pi x}{L}, n=1,2, \ldots$.

To determine h, we have another eigenvalue problem

$$
h^{\prime \prime}=-\mu h, \quad h^{\prime}(0)=h^{\prime}(H)=0 .
$$

This problem has eigenvalues $\mu_{m}=\left(\frac{m \pi}{H}\right)^{2}, m=0,1,2, \ldots$. The corresponding eigenfunctions are $\psi_{0}=1$ and $\psi_{m}(y)=\cos \frac{m \pi y}{H}, m=1,2, \ldots$.

The function G is to be determined from the equation $G^{\prime \prime}=-(\lambda+\mu) c^{2} G$. We may assume that λ and μ are eigenvalues of the above eigenvalue problems so that $\lambda, \mu \geq 0$. If $\lambda=\mu=0$ then the general solution of the equation is $G(t)=C_{0}+D_{0} t$, where C_{0}, D_{0} are constants. If $\lambda+\mu>0$ then the general solution of the equation is

$$
G(t)=C_{0} \cos (\sqrt{\lambda+\mu} c t)+D_{0} \sin (\sqrt{\lambda+\mu} c t)
$$

where C_{0}, D_{0} are constants.
Thus for any $n, m \geq 0$ we have the following solutions of the wave equation satisfying the boundary conditions:

$$
\begin{aligned}
& u(x, y, t)=\left(C_{0} \cos \left(\sqrt{\lambda_{n}+\mu_{m}} c t\right)+D_{0} \sin \left(\sqrt{\lambda_{n}+\mu_{m}} c t\right)\right) \phi_{n}(x) \psi_{m}(y) \\
& \quad=\left(C_{0} \cos \left(\sqrt{(n \pi / L)^{2}+(m \pi / H)^{2}} c t\right)+D_{0} \sin \left(\sqrt{(n \pi / L)^{2}+(m \pi / H)^{2}} c t\right)\right) \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H}
\end{aligned}
$$

A superposition of these solutions is a double series

$$
\begin{aligned}
& u(x, y, t)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left(C_{n m} \cos \left(\sqrt{(n \pi / L)^{2}+(m \pi / H)^{2}} c t\right)\right. \\
& \left.+D_{n m} \sin \left(\sqrt{(n \pi / L)^{2}+(m \pi / H)^{2}} c t\right)\right) \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H}
\end{aligned}
$$

where $C_{n m}, D_{n m}$ are constants. Substituting the series into the initial conditions $u(x, y, 0)=0$ and $\frac{\partial u}{\partial t}(x, y, 0)=f(x, y)$, we get

$$
\begin{gathered}
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} C_{n m} \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H}=0 \\
f(x, y)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} D_{n m} \sqrt{(n \pi / L)^{2}+(m \pi / H)^{2}} c \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H} .
\end{gathered}
$$

It follows that $C_{n m}=0$ while $D_{n m}=\frac{b_{n m}}{\sqrt{(n \pi / L)^{2}+(m \pi / H)^{2}} c}$, where $b_{n m}$ are coefficients of the expansion

$$
f(x, y)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} b_{n m} \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{H} .
$$

