
Solutions for

homework assignment #4

Problem 1. Solve Laplace’s equation inside a rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ H, with the
following boundary conditions:

∂u

∂x
(0, y) = 0,

∂u

∂x
(L, y) = 0, u(x, 0) = 0, u(x, H) = f(x).

Solution:

u(x, y) = b0
y

H
+

∑∞

n=1
bn

(
sinh

nπH

L

)−1

sinh
nπy

L
cos

nπx

L
,

where
b0 +

∑∞

n=1
bn cos

nπx

L

is the Fourier cosine series of the function f(x) on [0, L], that is,

b0 =
1
L

∫ L

0
f(x) dx, bn =

2
L

∫ L

0
f(x) cos

nπx

L
dx, n = 1, 2, . . .

Detailed solution: We search for the solution of the boundary value problem as a superposition
of solutions u(x, y) = φ(x)h(y) with separated variables of Laplace’s equation that satisfy the three
homogeneous boundary conditions.

Substituting u(x, y) = φ(x)h(y) into Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0,

we obtain
φ′′(x)h(y) + φ(x)h′′(y) = 0,

φ′′(x)
φ(x)

= −h
′′(y)
h(y)

.

Since the left-hand side does not depend on y while the right-hand side does not depend on x, it
follows that

φ′′(x)
φ(x)

= −h
′′(y)
h(y)

= −λ,

where λ is a constant. Then
φ′′ = −λφ, h′′ = λh.

Conversely, if functions φ and h are solutions of the above ODEs for the same value of λ, then
u(x, y) = φ(x)h(y) is a solution of Laplace’s equation.

Substituting u(x, y) = φ(x)h(y) into the homogeneous boundary conditions, we get

φ′(0)h(y) = 0, φ′(L)h(y) = 0, φ(x)h(0) = 0.

It is no loss to assume that neither φ nor h is identically zero. Then the boundary conditions are
satisfied if and only if φ′(0) = φ′(L) = 0, h(0) = 0.

To determine φ, we have an eigenvalue problem

φ′′ = −λφ, φ′(0) = φ′(L) = 0.
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This problem has eigenvalues λn =
(nπ
L

)2
, n = 0, 1, 2, . . .. The corresponding eigenfunctions are

φ0 = 1 and φn(x) = cos
nπx

L
, n = 1, 2, . . ..

The function h is to be determined from the equation h′′ = λh and the boundary condition
h(0) = 0. We may assume that λ is one of the above eigenvalues so that λ ≥ 0. If λ = 0 then the
general solution of the equation is h(y) = c1 +c2y, where c1, c2 are constants. If λ > 0 then the general
solution is h(y) = c1 coshµy + c2 sinhµy, where µ =

√
λ and c1, c2 are constants. In both cases, the

boundary condition h(0) = 0 holds if c1 = 0.
Thus we obtain the following solutions of Laplace’s equation satisfying the three homogeneous

boundary conditions:

u0(x, y) = y, un(x, y) = sinh
nπy

L
cos

nπx

L
, n = 1, 2, . . .

A superposition of these solutions is a series

u(x, y) = c0y +
∑∞

n=1
cn sinh

nπy

L
cos

nπx

L
,

where c0, c1, c2, . . . are constants. Substituting the series into the boundary condition u(x,H) = f(x),
we get

f(x) = c0H +
∑∞

n=1
cn sinh

nπH

L
cos

nπx

L
.

The right-hand side is a Fourier cosine series on the interval [0, L]. Therefore the boundary condition
is satisfied if the right-hand side coincides with the Fourier cosine series

b0 +
∑∞

n=1
bn cos

nπx

L

of the function f(x) on [0, L]. Hence

c0 =
b0
H
, cn =

bn

sinh nπH
L

, n = 1, 2, . . . ,

where

b0 =
1
L

∫ L

0
f(x) dx, bn =

2
L

∫ L

0
f(x) cos

nπx

L
dx, n = 1, 2, . . .

Problem 2. Solve Laplace’s equation inside a semicircle of radius a (0 < r < a, 0 < θ < π)
subject to the boundary conditions: u = 0 on the diameter and u(a, θ) = g(θ).

Solution:
u(r, θ) =

∑∞

n=1
bn

(r
a

)n
sinnθ,

where ∑∞

n=1
bn sinnθ

is the Fourier sine series of the function g(θ) on [0, π], that is,

bn =
2
π

∫ π

0
g(θ) sinnθ dθ, n = 1, 2, . . .

Detailed solution: Laplace’s equation in polar coordinates (r, θ):

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2
∂2u

∂θ2
= 0.
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The boundary condition u = 0 on the diameter gives rise to three boundary conditions in polar
coordinates:

u(r, 0) = u(r, π) = 0 (0 < r < a),

u(0, θ) = 0 (0 < θ < π)

(the latter condition means that u = 0 at the origin).
We search for the solution of the boundary value problem as a superposition of solutions u(r, θ) =

h(r)φ(θ) with separated variables of Laplace’s equation that satisfy the above homogeneous boundary
conditions.

Substituting u(r, θ) = h(r)φ(θ) into Laplace’s equation, we obtain

h′′(r)φ(θ) +
1
r
h′(r)φ(θ) +

1
r2
h(r)φ′′(θ) = 0,

r2h′′(r) + rh′(r)
h(r)

= −φ
′′(θ)
φ(θ)

.

Since the left-hand side does not depend on θ while the right-hand side does not depend on r, it follows
that

r2h′′(r) + rh′(r)
h(r)

= −φ
′′(θ)
φ(θ)

= λ,

where λ is a constant. Then

r2h′′(r) + rh′(r) = λh(r), φ′′ = −λφ.

Conversely, if functions h and φ are solutions of the above ODEs for the same value of λ, then
u(r, θ) = h(r)φ(θ) is a solution of Laplace’s equation in polar coordinates.

Substituting u(r, θ) = h(r)φ(θ) into the homogeneous boundary conditions, we get

h(r)φ(0) = 0, h(r)φ(π) = 0, h(0)φ(θ) = 0.

It is no loss to assume that neither h nor φ is identically zero. Then the boundary conditions are
satisfied if and only if φ(0) = φ(π) = 0, h(0) = 0.

To determine φ, we have an eigenvalue problem

φ′′ = −λφ, φ(0) = φ(π) = 0.

This problem has eigenvalues λn = n2, n = 1, 2, . . .. The corresponding eigenfunctions are φn(θ) =
sinnθ, n = 1, 2, . . ..

The function h is to be determined from the equation r2h′′+rh′ = λh and the boundary condition
h(0) = 0. We may assume that λ is one of the above eigenvalues so that λ > 0. Then the general
solution of the equation is h(r) = c1r

µ + c2r
−µ, where µ =

√
λ and c1, c2 are constants. The boundary

condition h(0) = 0 holds if c2 = 0.
Thus we obtain the following solutions of Laplace’s equation satisfying the three homogeneous

boundary conditions:
un(r, θ) = rn sinnθ, n = 1, 2, . . .

A superposition of these solutions is a series

u(r, θ) =
∑∞

n=1
cnr

n sinnθ,

where c1, c2, . . . are constants. Substituting the series into the boundary condition u(a, θ) = g(θ), we
get

g(θ) =
∑∞

n=1
cna

n sinnθ.
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The right-hand side is a Fourier sine series on the interval [0, π]. Therefore the boundary condition is
satisfied if the right-hand side coincides with the Fourier sine series∑∞

n=1
bn sinnθ

of the function g(θ) on [0, π]. Hence

cn = bna
−n, n = 1, 2, . . . ,

where
bn =

2
π

∫ π

0
g(θ) sinnθ dθ, n = 1, 2, . . .

Problem 3. Solve Laplace’s equation inside a 90o sector of a circular annulus (a < r < b,
0 < θ < π/2) subject to the boundary conditions:

u(r, 0) = 0, u(r, π/2) = 0, u(a, θ) = 0, u(b, θ) = f(θ).

Solution:

u(r, θ) =
∑∞

n=1
bn

(r/a)2n − (a/r)2n

(b/a)2n − (a/b)2n
sin 2nθ,

where ∑∞

n=1
bn sin 2nθ

is the Fourier sine series of the function f(θ) on [0, π/2], that is,

bn =
4
π

∫ π/2

0
f(θ) sin 2nθ dθ, n = 1, 2, . . .

Detailed solution: We search for the solution of the boundary value problem as a superposition
of solutions u(r, θ) = h(r)φ(θ) with separated variables of Laplace’s equation that satisfy the three
homogeneous boundary conditions.

As shown in the solution of Problem 2, u(r, θ) = h(r)φ(θ) is a solution of Laplace’s equation in
polar coordinates if functions h and φ are solutions of the equations

r2h′′(r) + rh′(r) = λh(r), φ′′ = −λφ

for the same constant λ.
Substituting u(r, θ) = h(r)φ(θ) into the homogeneous boundary conditions, we get

h(r)φ(0) = 0, h(r)φ(π/2) = 0, h(a)φ(θ) = 0.

It is no loss to assume that neither h nor φ is identically zero. Then the boundary conditions are
satisfied if and only if φ(0) = φ(π/2) = 0, h(a) = 0.

To determine φ, we have an eigenvalue problem

φ′′ = −λφ, φ(0) = φ(π/2) = 0.

This problem has eigenvalues λn = (2n)2, n = 1, 2, . . .. The corresponding eigenfunctions are φn(θ) =
sin 2nθ, n = 1, 2, . . ..
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The function h is to be determined from the equation r2h′′+rh′ = λh and the boundary condition
h(a) = 0. We may assume that λ is one of the above eigenvalues so that λ > 0. Then the general
solution of the equation is h(r) = c1r

µ + c2r
−µ, where µ =

√
λ and c1, c2 are constants. The boundary

condition h(a) = 0 holds if c1aµ + c2a
−µ = 0, which implies that h(r) = c0((r/a)µ − (r/a)−µ), where

c0 is a constant.
Thus we obtain the following solutions of Laplace’s equation satisfying the three homogeneous

boundary conditions:

un(r, θ) =
((r

a

)2n
−

(a
r

)2n
)

sin 2nθ, n = 1, 2, . . .

A superposition of these solutions is a series

u(r, θ) =
∑∞

n=1
cn

((r
a

)2n
−

(a
r

)2n
)

sin 2nθ,

where c1, c2, . . . are constants. Substituting the series into the boundary condition u(b, θ) = f(θ), we
get

f(θ) =
∑∞

n=1
cn

(( b
a

)2n
−

(a
b

)2n
)

sin 2nθ.

The right-hand side is a Fourier sine series on the interval [0, π/2]. Therefore the boundary condition
is satisfied if the right-hand side coincides with the Fourier sine series∑∞

n=1
bn sin 2nθ

of the function f(θ) on [0, π/2]. Hence

cn =
bn

(b/a)2n − (a/b)2n
, n = 1, 2, . . . ,

where

bn =
4
π

∫ π/2

0
f(θ) sin 2nθ dθ, n = 1, 2, . . .

Problem 4. Consider the heat equation in a two-dimensional rectangular region, 0 < x <
L, 0 < y < H,

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2

)
subject to the initial condition u(x, y, 0) = f(x, y).

Solve the initial-boundary value problem and analyze the temperature as t → ∞ if the
boundary conditions are:

∂u

∂x
(0, y, t) = 0,

∂u

∂x
(L, y, t) = 0,

∂u

∂y
(x, 0, t) = 0,

∂u

∂y
(x, H, t) = 0.

Solution:

u(x, y, t) =
∞∑

n=0

∞∑
m=0

cnm exp
(
−

(
(nπ/L)2 + (mπ/H)2

)
kt

)
cos

nπx

L
cos

mπy

H
,
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where

c00 =
1
LH

∫ L

0

∫ H

0
f(x, y) dx dy,

cn0 =
2
LH

∫ L

0

∫ H

0
f(x, y) cos

nπx

L
dx dy, n ≥ 1,

c0m =
2
LH

∫ L

0

∫ H

0
f(x, y) cos

mπy

H
dxdy, m ≥ 1,

cnm =
4
LH

∫ L

0

∫ H

0
f(x, y) cos

nπx

L
cos

mπy

H
dxdy, n,m ≥ 1.

As t→∞, the temperature uniformly approaches the constant c00, the mean value of f(x, y) over
the rectangle.

Detailed solution: We search for the solution of the initial-boundary value problem as a
superposition of solutions u(x, y, t) = φ(x)h(y)G(t) with separated variables of the heat equation that
satisfy the boundary conditions.

Substituting u(x, y, t) = φ(x)h(y)G(t) into the heat equation, we obtain

φ(x)h(y)G ′(t) = k
(
φ′′(x)h(y)G(t) + φ(x)h′′(y)G(t)

)
,

G ′(t)
kG(t)

=
φ′′(x)
φ(x)

+
h′′(y)
h(y)

.

Since any of the expressions
G ′(t)
kG(t)

,
φ′′(x)
φ(x)

, and
h′′(y)
h(y)

depend on one of the variables x, y, t and does

not depend on the other two, it follows that each of these expressions is constant. Hence

φ′′(x)
φ(x)

= −λ, h′′(y)
h(y)

= −µ, G ′(t)
kG(t)

= −(λ+ µ),

where λ and µ are constants. Then

φ′′ = −λφ, h′′ = −µh, G ′ = −(λ+ µ)kG.

Conversely, if functions φ, h, and G are solutions of the above ODEs for the same values of λ and µ,
then u(x, y, t) = φ(x)h(y)G(t) is a solution of the heat equation.

Substituting u(x, y, t) = φ(x)h(y)G(t) into the boundary conditions, we get

φ′(0)h(y)G(t) = φ′(L)h(y)G(t) = 0, φ(x)h′(0)G(t) = φ(x)h′(H)G(t) = 0.

It is no loss to assume that neither φ nor h nor G is identically zero. Then the boundary conditions
are satisfied if and only if φ′(0) = φ′(L) = 0, h′(0) = h′(H) = 0.

To determine φ, we have an eigenvalue problem

φ′′ = −λφ, φ′(0) = φ′(L) = 0.

This problem has eigenvalues λn =
(nπ
L

)2
, n = 0, 1, 2, . . .. The corresponding eigenfunctions are

φ0 = 1 and φn(x) = cos
nπx

L
, n = 1, 2, . . ..

To determine h, we have another eigenvalue problem

h′′ = −µh, h′(0) = h′(H) = 0.

6



This problem has eigenvalues µm =
(mπ
H

)2
, m = 0, 1, 2, . . .. The corresponding eigenfunctions are

ψ0 = 1 and ψm(y) = cos
mπy

H
, m = 1, 2, . . ..

The function G is to be determined from the equation G ′ = −(λ+ µ)kG. The general solution of
this equation is G(t) = c0e

−(λ+µ)kt, where c0 is a constant.
Thus we obtain the following solutions of the heat equation satisfying the boundary conditions:

unm(x, y, t) = e−(λn+µm)ktφn(x)ψm(y)

= exp
(
−

(
(nπ/L)2 + (mπ/H)2

)
kt

)
cos

nπx

L
cos

mπy

H
, n,m = 0, 1, 2, . . .

A superposition of these solutions is a double series

u(x, y, t) =
∞∑

n=0

∞∑
m=0

cnm exp
(
−

(
(nπ/L)2 + (mπ/H)2

)
kt

)
cos

nπx

L
cos

mπy

H
,

where cnm are constants. Substituting the series into the initial condition u(x, y, 0) = f(x, y), we get

f(x, y) =
∞∑

n=0

∞∑
m=0

cnm cos
nπx

L
cos

mπy

H
=

∞∑
n=0

∞∑
m=0

cnmφn(x)ψm(y).

To determine the coefficients cnm, we multiply both sides by φN (x)ψM (y) (N,M ≥ 0) and integrate
over the rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ H. We assume that the series may be integrated term-by-term:∫ L

0

∫ H

0
f(x, y)φN (x)ψM (y) dx dy =

∞∑
n=0

∞∑
m=0

cnm

∫ L

0

∫ H

0
φN (x)ψM (y)φn(x)ψm(y) dx dy

=
∞∑

n=0

∞∑
m=0

cnm

∫ L

0
φN (x)φn(x) dx

∫ H

0
ψM (y)ψm(y) dy.

Using the orthogonality relations ∫ L

0
φN (x)φn(x) dx = 0, N 6= n,

∫ H

0
ψM (y)ψm(y) dy = 0, M 6= m,

we obtain ∫ L

0

∫ H

0
f(x, y)φN (x)ψM (y) dx dy = cNM

∫ L

0
φ2

N (x) dx
∫ H

0
ψ2

M (y) dy.

It remains to recall that ∫ L

0
φ2

0(x) dx = L,

∫ L

0
φ2

N (x) dx =
L

2
, N ≥ 1,

and, similarly, ∫ H

0
ψ2

0(x) dx = H,

∫ H

0
ψ2

M (x) dx =
H

2
, M ≥ 1.

In the double series expansion of u(x, y, t), each term contains an exponential factor e−(λn+µm)kt,
which is decaying as t → ∞ except for the case n = m = 0 when this factor is equal to 1. It follows
that, as t→∞, the solution u(x, y, t) uniformly converges to the constant c00:

lim
t→∞

u(x, y, t) = c00 =
1
LH

∫ L

0

∫ H

0
f(x, y) dx dy.
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Problem 5. Consider the wave equation for a vibrating rectangular membrane (0 < x < L,
0 < y < H)

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
subject to the initial conditions u(x, y, 0) = 0 and

∂u

∂t
(x, y, 0) = f(x, y).

Solve the initial-boundary value problem if

∂u

∂x
(0, y, t) = 0,

∂u

∂x
(L, y, t) = 0,

∂u

∂y
(x, 0, t) = 0,

∂u

∂y
(x, H, t) = 0.

Solution:

u(x, y, t) =
∞∑

n=0

∞∑
m=0

bnm
sin(

√
(nπ/L)2 + (mπ/H)2 ct)√

(nπ/L)2 + (mπ/H)2 c
cos

nπx

L
cos

mπy

H
,

where bnm are coefficients of the expansion

f(x, y) =
∞∑

n=0

∞∑
m=0

bnm cos
nπx

L
cos

mπy

H
.

The formulas for bnm are obtained in the solution of Problem 4.

Detailed solution: We search for the solution of the initial-boundary value problem as a
superposition of solutions u(x, y, t) = φ(x)h(y)G(t) with separated variables of the wave equation that
satisfy the boundary conditions.

Substituting u(x, y, t) = φ(x)h(y)G(t) into the wave equation, we obtain

φ(x)h(y)G ′′(t) = c2
(
φ′′(x)h(y)G(t) + φ(x)h′′(y)G(t)

)
,

G ′′(t)
c2G(t)

=
φ′′(x)
φ(x)

+
h′′(y)
h(y)

.

Since any of the expressions
G ′′(t)
c2G(t)

,
φ′′(x)
φ(x)

, and
h′′(y)
h(y)

depend on one of the variables x, y, t and does

not depend on the other two, it follows that each of these expressions is constant. Hence

φ′′(x)
φ(x)

= −λ, h′′(y)
h(y)

= −µ, G ′′(t)
c2G(t)

= −(λ+ µ),

where λ and µ are constants. Then

φ′′ = −λφ, h′′ = −µh, G ′′ = −(λ+ µ)c2G.

Conversely, if functions φ, h, and G are solutions of the above ODEs for the same values of λ and µ,
then u(x, y, t) = φ(x)h(y)G(t) is a solution of the wave equation.

Substituting u(x, y, t) = φ(x)h(y)G(t) into the boundary conditions, we get

φ′(0)h(y)G(t) = φ′(L)h(y)G(t) = 0, φ(x)h′(0)G(t) = φ(x)h′(H)G(t) = 0.

It is no loss to assume that neither φ nor h nor G is identically zero. Then the boundary conditions
are satisfied if and only if φ′(0) = φ′(L) = 0, h′(0) = h′(H) = 0.
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To determine φ, we have an eigenvalue problem

φ′′ = −λφ, φ′(0) = φ′(L) = 0.

This problem has eigenvalues λn =
(nπ
L

)2
, n = 0, 1, 2, . . .. The corresponding eigenfunctions are

φ0 = 1 and φn(x) = cos
nπx

L
, n = 1, 2, . . ..

To determine h, we have another eigenvalue problem

h′′ = −µh, h′(0) = h′(H) = 0.

This problem has eigenvalues µm =
(mπ
H

)2
, m = 0, 1, 2, . . .. The corresponding eigenfunctions are

ψ0 = 1 and ψm(y) = cos
mπy

H
, m = 1, 2, . . ..

The function G is to be determined from the equation G ′′ = −(λ+ µ)c2G. We may assume that
λ and µ are eigenvalues of the above eigenvalue problems so that λ, µ ≥ 0. If λ = µ = 0 then the
general solution of the equation is G(t) = C0 +D0t, where C0, D0 are constants. If λ+µ > 0 then the
general solution of the equation is

G(t) = C0 cos(
√
λ+ µ ct) +D0 sin(

√
λ+ µ ct),

where C0, D0 are constants.
Thus for any n,m ≥ 0 we have the following solutions of the wave equation satisfying the boundary

conditions:

u(x, y, t) =
(
C0 cos(

√
λn + µm ct) +D0 sin(

√
λn + µm ct)

)
φn(x)ψm(y)

=
(
C0 cos(

√
(nπ/L)2 + (mπ/H)2 ct) +D0 sin(

√
(nπ/L)2 + (mπ/H)2 ct)

)
cos

nπx

L
cos

mπy

H
.

A superposition of these solutions is a double series

u(x, y, t) =
∞∑

n=0

∞∑
m=0

(
Cnm cos(

√
(nπ/L)2 + (mπ/H)2 ct)

+ Dnm sin(
√

(nπ/L)2 + (mπ/H)2 ct)
)

cos
nπx

L
cos

mπy

H
,

where Cnm, Dnm are constants. Substituting the series into the initial conditions u(x, y, 0) = 0 and
∂u

∂t
(x, y, 0) = f(x, y), we get

∞∑
n=0

∞∑
m=0

Cnm cos
nπx

L
cos

mπy

H
= 0,

f(x, y) =
∞∑

n=0

∞∑
m=0

Dnm

√
(nπ/L)2 + (mπ/H)2 c cos

nπx

L
cos

mπy

H
.

It follows that Cnm = 0 while Dnm =
bnm√

(nπ/L)2 + (mπ/H)2 c
, where bnm are coefficients of the

expansion

f(x, y) =
∞∑

n=0

∞∑
m=0

bnm cos
nπx

L
cos

mπy

H
.
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