Solutions for
homework assignment #4

Problem 1. Solve Laplace’s equation inside a rectangle 0 <z < L, 0 <y < H, with the
following boundary conditions:

%(O,y) =0, %(L,y) =0, u(z,0) =0, u(z, H) = f(z).

Solution:

nrH\ ! . hmry cos nmwx
inh —= —
L L’

u(z,y) = bo% + Zzozl bn, (Sinh

bo—I-Z by, COS@

is the Fourier cosine series of the function f(z) on [0, L], that is,

1 L
_L/ f(z)dz, /f Coswdaﬁ n=12,...
0

Detailed solution: We search for the solution of the boundary value problem as a superposition
of solutions u(z,y) = ¢(x)h(y) with separated variables of Laplace’s equation that satisfy the three
homogeneous boundary conditions.

Substituting u(x,y) = ¢(x)h(y) into Laplace’s equation

where

Pu P
ox?  oy2
we obtain
¢"(x)h(y) + ¢(x)h" (y) = 0,
¢"(x) _ W'(y)
o(x) h(y)
Since the left-hand side does not depend on y while the right-hand side does not depend on z, it
follows that
o) W)
o(x) h(y) ’

where ) is a constant. Then
¢ = —\o, ' = \h.

Conversely, if functions ¢ and h are solutions of the above ODEs for the same value of A, then
u(z,y) = ¢(x)h(y) is a solution of Laplace’s equation.
Substituting u(z,y) = ¢(x)h(y) into the homogeneous boundary conditions, we get

¢’ (0)h(y) =0, ¢ (L)h(y) =0, ¢(z)h(0)=0.

It is no loss to assume that neither ¢ nor h is identically zero. Then the boundary conditions are
satisfied if and only if ¢'(0) = ¢/(L) = 0, h(0) = 0.
To determine ¢, we have an eigenvalue problem

"=xp, d(0)=¢(L)=0.
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This problem has eigenvalues A\, = (%) ,n =0,1,2,.... The corresponding eigenfunctions are

oo =1 and ¢, (z) = COS?, n=12,....

The function h is to be determined from the equation h” = Ah and the boundary condition
h(0) = 0. We may assume that X is one of the above eigenvalues so that A > 0. If A = 0 then the
general solution of the equation is h(y) = ¢1 + coy, where c1, ¢ are constants. If A > 0 then the general
solution is h(y) = ¢1 cosh puy + ¢ sinh py, where g = /X and ¢;, ¢p are constants. In both cases, the
boundary condition ~(0) = 0 holds if ¢; = 0.

Thus we obtain the following solutions of Laplace’s equation satisfying the three homogeneous
boundary conditions:

., nm nmwx
wo(z,y) =y, up(z,y)=sinh Y cos —, n=12...
L L
A superposition of these solutions is a series
Y nmwx
u(z,y) —coy—l-z cnsmh—cosT,
where cg, c1, g, . .. are constants. Substituting the series into the boundary condition u(z, H) = f(x),

we get

H
=coH + Z Cn smh cos ?

The right-hand side is a Fourier cosine series on the interval [0, L]. Therefore the boundary condition
is satisfied if the right-hand side coincides with the Fourier cosine series

bo—l-z bn, cos@

of the function f(z) on [0, L]. Hence

bo
COZE, Cn:@, n=1,2, ,
where .
1
:L/ f(z)dx, /f cosmda: n=12,...
0

Problem 2. Solve Laplace’s equation inside a semicircle of radius a (0 < r < a,0 < 6 < )
subject to the boundary conditions: u = 0 on the diameter and u(a, ) = g(0).

Solution:

u(r,0) = Zzozl bn<£>n sinnf,

Z:;l by, sin nb

is the Fourier sine series of the function g(6) on [0, 7], that is,

where

bn:2/ g(@)sinnfdh, n=12,...
0

™

Detailed solution: Laplace’s equation in polar coordinates (r, 6):

Pu 1 0u 1 9%u

a2 Trar Tae =



The boundary condition v = 0 on the diameter gives rise to three boundary conditions in polar
coordinates:
u(r,0) = u(r,m) =0 (0<r<a),
u(0,0) =0 0<o<m)
(the latter condition means that v = 0 at the origin).

We search for the solution of the boundary value problem as a superposition of solutions u(r,6) =
h(r)$(6) with separated variables of Laplace’s equation that satisfy the above homogeneous boundary
conditions.

Substituting u(r, 0) = h(r)¢(6) into Laplace’s equation, we obtain

WIr)0(0) + - H(r)6(0) + 5 h(r)¢"(6) =0,

P () + i () ¢(0)
nr) o0

Since the left-hand side does not depend on 6 while the right-hand side does not depend on r, it follows
that

r2h" (r) + rh/(r) ") _ \

h(r) o0 7

where ) is a constant. Then
r?h"(r) + rh'(r) = Ah(r), "= —\o.

Conversely, if functions h and ¢ are solutions of the above ODEs for the same value of A, then
u(r,8) = h(r)$(0) is a solution of Laplace’s equation in polar coordinates.
Substituting u(r, ) = h(r)¢(#) into the homogeneous boundary conditions, we get

h(r)¢(0) =0, h(r)o(r) =0, h(0)p(#) = 0.

It is no loss to assume that neither A nor ¢ is identically zero. Then the boundary conditions are
satisfied if and only if ¢(0) = ¢(7) =0, h(0) = 0.
To determine ¢, we have an eigenvalue problem

"=-Xp,  $(0) = o(m) =0.

This problem has eigenvalues A\, = n?, n = 1,2,.... The corresponding eigenfunctions are ¢,(6) =
sinnf, n=1,2,....

The function h is to be determined from the equation r2h” +rh’ = Ah and the boundary condition
h(0) = 0. We may assume that A is one of the above eigenvalues so that A > 0. Then the general
solution of the equation is h(r) = c1r* + cor™#, where u = VA and ¢1, ¢2 are constants. The boundary
condition h(0) = 0 holds if co = 0.

Thus we obtain the following solutions of Laplace’s equation satisfying the three homogeneous
boundary conditions:

Up(r,0) =r"sinnf, n=1,2,...

A superposition of these solutions is a series
(o) n -
u(r,0) = E | CnT sinnd,
n=

where ¢q, ¢, ... are constants. Substituting the series into the boundary condition u(a, ) = g(0), we
get

g(0) = Zooil cpa” sinnf.

3



The right-hand side is a Fourier sine series on the interval [0, 7]. Therefore the boundary condition is
satisfied if the right-hand side coincides with the Fourier sine series

Zzozl by, sin nb

of the function ¢(#) on [0,7]. Hence

cn=">ba™ ", n=12...,
where
2 ™
bn:/ g(0)sinnfdh, n=12,...
T Jo

Problem 3. Solve Laplace’s equation inside a 90° sector of a circular annulus (a < r < b,
0 < 6 < m/2) subject to the boundary conditions:

u(r,0) =0, u(r,m/2) =0, u(a,0) =0, u(b,0) = f(0).

Solution:

(= (/)
u(r,0) = anl by, (b/a) = (ajb) sin 2nd,

where

(o)
Z by, sin 2n6
n=1

is the Fourier sine series of the function f(6) on [0, 7/2], that is,

4 /2
bn:/ f(@)sin2nfdf, n=1,2,...
T Jo

Detailed solution: We search for the solution of the boundary value problem as a superposition
of solutions u(r,8) = h(r)¢(0) with separated variables of Laplace’s equation that satisfy the three
homogeneous boundary conditions.

As shown in the solution of Problem 2, u(r,0) = h(r)$(f) is a solution of Laplace’s equation in
polar coordinates if functions h and ¢ are solutions of the equations

21" (r) 4 rh! (1) = Ah(r), N

for the same constant .
Substituting u(r, 0) = h(r)¢(6) into the homogeneous boundary conditions, we get

Wr)p(0) =0, h(r)é(r/2) =0, h(a)¢(8) = 0.

It is no loss to assume that neither A nor ¢ is identically zero. Then the boundary conditions are
satisfied if and only if ¢(0) = ¢(7/2) =0, h(a) = 0.
To determine ¢, we have an eigenvalue problem

"=-xp,  ¢(0) =¢(n/2) =0.

This problem has eigenvalues A\, = (2n)?, n = 1,2,.... The corresponding eigenfunctions are ¢,(6) =
sin2nf, n=1,2,....



The function A is to be determined from the equation 72h” +rh’ = Ah and the boundary condition
h(a) = 0. We may assume that X is one of the above eigenvalues so that A\ > 0. Then the general
solution of the equation is h(r) = c;r* + cor ", where u = Vv and c1, co are constants. The boundary
condition h(a) = 0 holds if c;a* 4+ caa™ = 0, which implies that h(r) = co((r/a)* — (r/a)™*), where
cp 1s a constant.

Thus we obtain the following solutions of Laplace’s equation satisfying the three homogeneous

boundary conditions:
2n 2n
U (r,0) = ((T) - (ﬁ) ) sin2nf, n=1,2,...
a r

A superposition of these solutions is a series

) =30 e (5)" = (4)") sz

where ¢q, ¢, ... are constants. Substituting the series into the boundary condition u(b,0) = f(60), we

get
f(0) = 2211 “n <<2>2n B <Z>2”> sin 2nf.

The right-hand side is a Fourier sine series on the interval [0, 7/2]. Therefore the boundary condition
is satisfied if the right-hand side coincides with the Fourier sine series

o0
Z by, sin 2nf
n=1

of the function f(#) on [0,7/2]. Hence

bn
(b/a)* — (a/b)>"’

n=12...,

Cp —

where

4 /2
bn:/ f(@)sin2nfdf, n=1,2,...
T Jo

Problem 4. Consider the heat equation in a two-dimensional rectangular region, 0 < x <
L, 0<y<H,
ou Pu  u
— =k — 4+ —
ot or?  Oy?

subject to the initial condition u(x,y,0) = f(z,y).
Solve the initial-boundary value problem and analyze the temperature as t — oo if the
boundary conditions are:

ou ou ou ou
= = —(L = - = —(z, H,t) = 0.
ax <O7 y? t) O’ ax( 7y7 t) 07 8y ('CE? O’ t) 07 8y ('T:? 7t) 0
Solution:
N nmw mmy
u(z,y,t) = ngzo mE:O Cnm exp(— ((nm/L)? + (mn/H)?) kt) CO8 —— €08 ——



where

1 L rH
Coo = Lf[/o /0 f(xay) d.ﬁl?dy,

2 LorH nwx
Cno LH /0 /0 f($7 y) COS T dx dy7 n-=z1,

92 L rH
Com = m/o /0 f(aj?y) COS mgy dSUdy, m 2 ]-a

4 (L H
Cnm:LH/O/O f(x,y)coszﬂcosmﬂwydxdy, n,m > 1.

As t — oo, the temperature uniformly approaches the constant cgp, the mean value of f(z,y) over
the rectangle.

Detailed solution:  We search for the solution of the initial-boundary value problem as a
superposition of solutions u(x,y,t) = ¢(x)h(y)G(t) with separated variables of the heat equation that
satisfy the boundary conditions.

Substituting u(z,y,t) = ¢(z)h(y)G(t) into the heat equation, we obtain

B(D)hW)G (1) = k(8" @)h()G(E) + 6@ ()G)),
G'(t) _ ¢"(@) M)

kGt ¢(z)  h(y)

G'(t) ¢'@) W)
kGt o) ™ hiy)

not depend on the other two, it follows that each of these expressions is constant. Hence

¢"(2) _ h G'(1)

Since any of the expressions depend on one of the variables z,y,t and does

o) — 7 hly) M kGR)

where \ and p are constants. Then

=—(A+n),

V=—Xp, h'=—ph, G'=—(\+pkG.

Conversely, if functions ¢, h, and G are solutions of the above ODEs for the same values of A and p,
then u(z,y,t) = ¢(x)h(y)G(t) is a solution of the heat equation.
Substituting u(x,y,t) = ¢(x)h(y)G(t) into the boundary conditions, we get

¢'(0)h(y)G(t) = ¢ (DMy)G(t) =0,  ¢(x)h'(0)G(t) = d(x)h' (H)G(t) = 0.
It is no loss to assume that neither ¢ nor h nor G is identically zero. Then the boundary conditions

are satisfied if and only if ¢'(0) = ¢/(L) =0, h'(0) = h/(H) = 0.
To determine ¢, we have an eigenvalue problem

"= #0)=¢(L)=0.

2
This problem has eigenvalues A\, = (%) ,n=20,1,2,.... The corresponding eigenfunctions are

¢o =1 and ¢n(:r):cos?,n:1,2,....

To determine h, we have another eigenvalue problem

W' =—ph,  KW(0)=h(H)=0.



mm
mmy H
Yo =1 and ¥, (y) = cos ——, m = 1,2,....
The function G is to be determined from the equation G’ = —(\ 4 u)kG. The general solution of
this equation is G(t) = cpe~ MMk where ¢ is a constant.
Thus we obtain the following solutions of the heat equation satisfying the boundary conditions:

U (2,,1) = e~ O G () (y)
™ mm

= exp(— ((mr/L)2 + (mw/H)z) k:t) cos nTcos %, n,m=0,1,2,...

2
This problem has eigenvalues ., = ( > ,m=20,1,2,.... The corresponding eigenfunctions are

A superposition of these solutions is a double series

u(z,y,t) = Z Z Cnm exp(— ((mr/L)2 + (mw/H)Q) kt) cos ? cos mgy,

n=0m=0

where ¢,,,;, are constants. Substituting the series into the initial condition u(z,y,0) = f(x,y), we get

f(fL‘, y) = Z Z Cnm COS LZ:U COS m;{ry = Z Z Cnm¢n($)7/}m(y)

n=0m=0 n=0m=0

To determine the coefficients ¢, we multiply both sides by ¢n(x)¥ar(y) (N, M > 0) and integrate
over the rectangle 0 < x < L, 0 <y < H. We assume that the series may be integrated term-by-term:

L rH oo o0 L rH
/0 /0 F@pon(@ny) dedy =3 3 com /0 /0 O (@)nt (1) (@) (y) der dy

n=0 m=0

=> D cmm /0 b (2)pn(x) da /0 D)o (y) dy.

n=0m=0

Using the orthogonality relations

L
/0 oN(T)pp(x)dr =0, N #n,

H
| entnt s =0, 3 #m
we obtain L on . .
[ s@non@pin dsdy = ey [k [ it an
It remains to recall that

L L L
[ dwa=1.  [TR@da=7 Nz
0 0 2
and, similarly,

H H
[ wa=n [CR@ar=5, =
0 0 2

In the double series expansion of u(x,y,t), each term contains an exponential factor e~ (Antpm)kt

which is decaying as t — oo except for the case n = m = 0 when this factor is equal to 1. It follows
that, as t — oo, the solution u(x,y,t) uniformly converges to the constant cgp:

1 L rH
i = = — .
ti{&”(%yat} €00 LH/OV /0' f(xay) d.ﬁUdy
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Problem 5. Consider the wave equation for a vibrating rectangular membrane (0 < x < L,
0<y<H)
Pu 5 (0P D*u
— = - + -
ot? ox?  Oy?

0
subject to the initial conditions u(z,y,0) = 0 and 8_?;(35’ y,0) = f(x,y).

Solve the initial-boundary value problem if

ou ou ou ou
5.0y, t) = oLy, t) = —(,0,t) = —(x, H,t) = 0.
ax<0’y7 ) 0’ ax( 7y’ ) 07 ay(x70’ ) 07 ay(x7 b ) 0

Solution:

sin(/(nm/L)2 + (mn/H)2ct) nmx  mmy
Zzbnm V(nm/L)2 + (mm/H)%c UL H

u(z,y,t)

n=0 m=0

where b,,,, are coefficients of the expansion

2 = nwT mm
= Z Z bnmcosTcos Hy'

n=0m=0

The formulas for b, are obtained in the solution of Problem 4.

Detailed solution:  We search for the solution of the initial-boundary value problem as a
superposition of solutions u(zx,y,t) = ¢(x)h(y)G(t) with separated variables of the wave equation that
satisfy the boundary conditions.

Substituting u(z,y,t) = ¢(z)h(y)G(t) into the wave equation, we obtain

S)hHG" (1) = (¢ @h)G(E) + o)W ()G (),

G"(t) _¢"(@)  W'(y)
2GW) ~ ola) " hy)
Gt ¢'x) W)
2G) ola)” ™ hiy)

not depend on the other two, it follows that each of these expressions is constant. Hence

¢"(z) _ . h'Q) G"(t)

Since any of the expressions depend on one of the variables x, ¥y, t and does

o) - N Ry M @am s AT

where A and p are constants. Then
"=\, h" = —ph, G" = -\ 4 p)G.

Conversely, if functions ¢, h, and G are solutions of the above ODEs for the same values of A and u,
then u(z,y,t) = ¢(z)h(y)G(t) is a solution of the wave equation.
Substituting u(x,y,t) = ¢(x)h(y)G(t) into the boundary conditions, we get

¢'(0)h(y)G(t) = ¢ (L)h(y)G(t) =0,  ¢(x)h'(0)G(t) = ¢(x)h'(H)G(t) = 0.

It is no loss to assume that neither ¢ nor h nor G is identically zero. Then the boundary conditions
are satisfied if and only if ¢'(0) = ¢/(L) =0, A'(0) = h'(H) = 0.
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To determine ¢, we have an eigenvalue problem

"= xp H0)= (L) =0.

2
This problem has eigenvalues A\, = (%) ,n =0,1,2,.... The corresponding eigenfunctions are

¢o =1 and d)n(:v):cos?,n:l,z....

To determine h, we have another eigenvalue problem
h'" = —puh, h'(0) = W' (H) = 0.
mm
mmy H
7 ,m=1,2,....

2
This problem has eigenvalues p, = ( > ,m=20,1,2,.... The corresponding eigenfunctions are

o = 1 and Yy (y) = cos

The function G is to be determined from the equation G” = —(\ + p)c2G. We may assume that
A and p are eigenvalues of the above eigenvalue problems so that A\, u > 0. If A = u = 0 then the
general solution of the equation is G(t) = Cp+ Dyt, where Cy, Dy are constants. If A+ > 0 then the
general solution of the equation is

G(t) = Cocos(v/ A+ pet) + Dosin(y/ A + pct),

where Cy, Dy are constants.
Thus for any n, m > 0 we have the following solutions of the wave equation satisfying the boundary
conditions:

u(z,y,t) = <C’o cos(\/Ap, + tm ct) + Dosin(\/An + pim ct)) On () (y)
T mmy

= (Co cos(v/(nm/L)2 + (mm/H)? ct) + Dysin(\/(nm/L)2 + (mm /H)? ct)> cos nT CO8 —

A superposition of these solutions is a double series

u(z,y, ) =33 (onm cos(v/(nm /L)% + (mn/H)2 ct)

n=0m=0

mmy
H )
where Chp,, Dy, are constants. Substituting the series into the initial conditions u(x,y,0) = 0 and

ou
7($7y70) = f(x7y)a we get

+ Dpmsin(y/(nm/L)2 + (mn/H)? ct)> cos ? cos

ot
Saca N mmy
Z Z Chrm €OS - cos o - 0,
n=0m=0
= nTT mm
f(z,y) = Z Z Dypmy/(nm/L)2 + (mn/H)?2 ¢ cos — - cos Hy'
n=0m=0
b
It follows that Cp,, = 0 while D, = S D) nm( Ty , where by, are coefficients of the
nmw + (mm c
expansion

o0 o0
flz,y) = Z Z brm COS sz cos mI}Ty

n=0m=0



