Homework assignment \#5
 (due Monday, October 16)

Problem 1. Consider the non-Sturm-Liouville differential equation

$$
\frac{d^{2} \phi}{d x^{2}}+\alpha(x) \frac{d \phi}{d x}+(\lambda \beta(x)+\gamma(x)) \phi=0
$$

Multiply this equation by $H(x)$. Determine $H(x)$ such that the equation may be reduced to the standard Sturm-Liouville form:

$$
\frac{d}{d x}\left(p(x) \frac{d \phi}{d x}\right)+(\lambda \sigma(x)+q(x)) \phi=0 .
$$

Given $\alpha(x), \beta(x)$, and $\gamma(x)$, what are $p(x), \sigma(x)$, and $q(x)$?
Problem 2. Consider

$$
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+\alpha u
$$

where c, ρ, K_{0}, α are functions of x, subject to

$$
u(0, t)=u(L, t)=0, \quad u(x, 0)=f(x)
$$

Assume that the appropriate eigenfunctions are known.
(i) Show that the eigenvalues are positive if $\alpha<0$.
(ii) Solve the initial value problem.
(iii) Briefly discuss $\lim _{t \rightarrow+\infty} u(x, t)$.

Problem 3. A Sturm-Liouville problem is called self-adjoint if

$$
\left.p\left(u v^{\prime}-v u^{\prime}\right)\right|_{a} ^{b}=0
$$

for any two functions u and v satisfying the boundary conditions. Show that the following yield self-adjoint problems:
(i) $\phi^{\prime}(0)=0$ and $\phi(L)=0$;
(ii) $\phi^{\prime}(0)-h \phi(0)=0$ and $\phi^{\prime}(L)=0$.

Problem 4. Consider the boundary value problem

$$
\phi^{\prime \prime}+\lambda \phi=0 \quad \text { with } \quad \phi(0)-\phi^{\prime}(0)=0, \quad \phi(1)+\phi^{\prime}(1)=0 .
$$

(i) Using the Rayleigh quotient, show that $\lambda \geq 0$. Why is $\lambda>0$?
(ii) Show that

$$
\tan \sqrt{\lambda}=\frac{2 \sqrt{\lambda}}{\lambda-1}
$$

Determine the eigenvalues graphically. Estimate the large eigenvalues.
Problem 5. Consider the eigenvalue problem

$$
\phi^{\prime \prime}+\lambda \phi=0 \quad \text { with } \quad \phi(0)=\phi^{\prime}(0) \text { and } \phi(1)=\beta \phi^{\prime}(1) .
$$

For what values (if any) of β is $\lambda=0$ an eigenvalue?

