Solutions for homework assignment #5

Problem 1. Consider the non-Sturm-Liouville differential equation

$$\frac{d^2\phi}{dx^2} + \alpha(x)\frac{d\phi}{dx} + (\lambda\beta(x) + \gamma(x))\phi = 0.$$

Multiply this equation by H(x). Determine H(x) such that the equation may be reduced to the standard Sturm-Liouville form:

$$\frac{d}{dx}\left(p(x)\frac{d\phi}{dx}\right) + (\lambda\sigma(x) + q(x))\phi = 0.$$

Given $\alpha(x)$, $\beta(x)$, and $\gamma(x)$, what are p(x), $\sigma(x)$, and q(x)?

Solution: $p(x) = e^{A(x)}$, $\sigma(x) = e^{A(x)}\beta(x)$, and $q(x) = e^{A(x)}\gamma(x)$, where A is an anti-derivative of α .

Detailed solution: The standard Sturm-Liouville equation can be rewritten as

$$p(x)\phi''(x) + p'(x)\phi'(x) + (\lambda\sigma(x) + q(x))\phi = 0$$

(assuming p is differentiable). This is to be the same as the equation

$$H(x)\phi''(x) + H(x)\alpha(x)\phi'(x) + (\lambda H(x)\beta(x) + H(x)\gamma(x))\phi(x) = 0.$$

It follows that p = H, $p' = H\alpha$, $\sigma = H\beta$, and $q = H\gamma$. We expect H to be positive. Then the first two relations imply that

$$\frac{p'}{p} = \alpha \quad \Longrightarrow \quad \log p = \int \alpha(x) \, dx \quad \Longrightarrow \quad p = \exp\left(\int \alpha(x) \, dx\right).$$

Consequently, $\sigma = p\beta$ and $q = p\gamma$.

Problem 2. Consider

$$c\rho \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(K_0 \frac{\partial u}{\partial x} \right) + \alpha u,$$

where c, ρ, K_0, α are functions of x, subject to

$$u(0,t) = u(L,t) = 0, \quad u(x,0) = f(x).$$

Assume that the appropriate eigenfunctions are known.

- (i) Show that the eigenvalues are positive if $\alpha < 0$.
- (ii) Solve the initial value problem.
- (iii) Briefly discuss $\lim_{t \to +\infty} u(x, t)$.

Solution:

$$u(x,t) = \sum_{n=1}^{\infty} c_n e^{-\lambda_n} \phi_n(x)$$

where $\lambda_1 < \lambda_2 < \dots$ are eigenvalues of the Sturm-Liouville eigenvalue problem

$$(K_0\phi')' + \alpha\phi + \lambda c\rho\phi = 0, \qquad \phi(0) = \phi(L) = 0,$$

 ϕ_1, ϕ_2, \ldots are the corresponding eigenfunctions, and

$$c_n = \frac{\int_0^L f(x)\phi_n(x)c(x)\rho(x) \, dx}{\int_0^L |\phi_n(x)|^2 c(x)\rho(x) \, dx}.$$

If $\lambda_1 > 0$ then $\lim_{t \to +\infty} u(x, t) = 0$.

Detailed solution: We search for the solution of the initial-boundary value problem as a superposition of solutions $u(x,t) = \phi(x)G(t)$ with separated variables of the differential equation that satisfy the boundary conditions.

Substituting $u(x,t) = \phi(x)G(t)$ into the differential equation, we obtain

$$c(x)\rho(x)\phi(x)G'(t) = (K_0(x)\phi'(x))'G(t) + \alpha\phi(x)G(t),$$
$$\frac{G'(t)}{G(t)} = \frac{(K_0(x)\phi'(x))' + \alpha\phi(x)}{c(x)\rho(x)\phi(x)}.$$

Since the left-hand side does not depend on x while the right-hand side does not depend on t, it follows that

$$\frac{G'(t)}{G(t)} = \frac{(K_0(x)\phi'(x))' + \alpha\phi(x)}{c(x)\rho(x)\phi(x)} = -\lambda$$

where λ is a constant. Then

$$G' = -\lambda G,$$
 $(K_0 \phi')' + \alpha \phi + \lambda c \rho \phi = 0$

Conversely, if functions G and ϕ are solutions of the above ODEs for the same value of λ , then $u(x,t) = \phi(x)G(t)$ is a solution of the given PDE.

Substituting $u(x,t) = \phi(x)G(t)$ into the boundary conditions, we get

$$\phi(0)G(t) = 0, \qquad \phi(L)G(t) = 0.$$

It is no loss to assume that G is not identically zero. Then the boundary conditions are satisfied if and only if $\phi(0) = \phi(L) = 0$.

To determine ϕ , we have a regular Sturm-Liouville eigenvalue problem

$$(K_0\phi')' + \alpha\phi + \lambda c\rho\phi = 0, \qquad \phi(0) = \phi(L) = 0.$$

This problem has infinitely many eigenvalues $\lambda_1 < \lambda_2 < \dots$ Let ϕ_n denote an eigenfunction corresponding to the eigenvalue λ_n . Then ϕ_n is determined up to multiplying by a scalar. λ_n and ϕ_n are related through the Rayleigh quotient

$$\lambda_n = \frac{-K_0 \phi_n \phi_n' \Big|_0^L + \int_0^L (K_0 |\phi_n'|^2 - \alpha |\phi_n|^2) \, dx}{\int_0^L c\rho |\phi_n|^2 \, dx}$$

Since $\phi_n(0) = \phi_n(L) = 0$, the non-integral term vanishes. If $\alpha < 0$ then it follows that $\lambda_n > 0$.

The function G is to be determined from the equation $G' = -\lambda G$. The general solution of this equation is $G(t) = c_0 e^{-\lambda t}$, where c_0 is a constant.

Thus we obtain the following solutions of the heat equation satisfying the boundary conditions:

$$u_n(x,t) = e^{-\lambda_n} \phi_n(x), \quad n = 1, 2, \dots$$

A superposition of these solutions is a series

$$u(x,t) = \sum_{n=1}^{\infty} c_n e^{-\lambda_n} \phi_n(x),$$

where c_1, c_2, \ldots are constants. Substituting the series into the initial condition u(x, 0) = f(x), we get

$$f(x) = \sum_{n=1}^{\infty} c_n \phi_n(x).$$

Hence the initial condition is satisfied if c_n are coefficients of the generalized Fourier series of f, that is, if

$$c_n = \frac{\int_0^L f(x)\phi_n(x)c(x)\rho(x) \, dx}{\int_0^L |\phi_n(x)|^2 c(x)\rho(x) \, dx}.$$

If all eigenvalues are positive then the solution u(x,t) vanishes as $t \to +\infty$ because each term of the corresponding series contains a decaying factor $e^{-\lambda_n}$.

Problem 3. A Sturm-Liouville problem is called self-adjoint if

$$p\left(uv'-vu'\right)\Big|_{a}^{b}=0$$

for any two functions u and v satisfying the boundary conditions. Show that the following yield self-adjoint problems:

- (i) $\phi'(0) = 0$ and $\phi(L) = 0$;
- (ii) $\phi'(0) h\phi(0) = 0$ and $\phi'(L) = 0$.

Solution: (i) Suppose that functions u and v satisfy the boundary conditions u'(0) = v'(0) = 0and u(L) = v(L) = 0. The first condition implies that u(0)v'(0) - v(0)u'(0) = 0 while the second one implies that u(L)v'(L) - v(L)u'(L) = 0. It follows that

$$p\left(uv'-vu'\right)\Big|_{0}^{L}=0.$$

(ii) Suppose that functions u and v satisfy the boundary conditions u'(0) - hu(0) = v'(0) - hv(0) = 0and u'(L) = v'(L) = 0. The first condition implies that $u(0)v'(0) - v(0)u'(0) = u(0) \cdot hv(0) - v(0) \cdot hu(0) = 0$ while the second one implies that u(L)v'(L) - v(L)u'(L) = 0. It follows that

$$p\left(uv'-vu'\right)\Big|_{0}^{L}=0$$

Problem 4. Consider the boundary value problem

$$\phi'' + \lambda \phi = 0$$
 with $\phi(0) - \phi'(0) = 0$, $\phi(1) + \phi'(1) = 0$.

(i) Using the Rayleigh quotient, show that $\lambda \ge 0$. Why is $\lambda > 0$?

(ii) Show that

$$\tan\sqrt{\lambda} = \frac{2\sqrt{\lambda}}{\lambda - 1}.$$

Determine the eigenvalues graphically. Estimate the large eigenvalues.

Solution: $\sqrt{\lambda_n} \sim (n-1)\pi$ as $n \to \infty$.

Detailed solution: (i) The Rayleigh quotient relates an eigenfunction ϕ to the corresponding eigenvalue λ :

$$\lambda = \frac{-\phi \phi' \Big|_{0}^{1} + \int_{0}^{1} |\phi'(x)|^{2} dx}{\int_{0}^{1} |\phi(x)|^{2} dx}$$

The boundary conditions imply that

$$-\phi\phi'\Big|_0^1 = -\phi(1)\phi'(1) + \phi(0)\phi'(0) = |\phi(1)|^2 + |\phi(0)|^2 \ge 0.$$

It follows that $\lambda \ge 0$. Furthermore, if $\lambda = 0$ then $\phi(0) = \phi(1) = 0$ and ϕ' is identically zero, which is not possible since then ϕ is also identically zero. Thus $\lambda > 0$.

(ii) For any $\lambda > 0$ the general solution of the equation $\phi'' + \lambda \phi = 0$ is $\phi(x) = c_1 \cos \mu x + c_2 \sin \mu x$, where $\mu = \sqrt{\lambda}$ and c_1, c_2 are constants. Substituting this into the boundary conditions $\phi(0) = \phi'(0)$ and $\phi(1) = -\phi'(1)$, we obtain

$$c_1 = c_2 \mu,$$
 $c_1 \cos \mu + c_2 \sin \mu = c_1 \mu \sin \mu - c_2 \mu \cos \mu.$

It follows that

$$c_2(\mu \cos \mu + \sin \mu) = c_2(\mu^2 \sin \mu - \mu \cos \mu),$$
$$c_2((\mu^2 - 1) \sin \mu - 2\mu \cos \mu) = 0.$$

A nonzero solution of the boundary value problem exists if and only if $(\mu^2 - 1) \sin \mu = 2\mu \cos \mu$. Since $\cos 1 \neq 0$, the latter equality implies that $\mu^2 \neq 1$ and $\cos \mu \neq 0$. Hence it is equivalent to

$$\tan \mu = \frac{2\mu}{\mu^2 - 1}$$

It remains to recall that $\mu = \sqrt{\lambda}$.

Let $0 < \lambda_1 < \lambda_2 < \ldots$ be the eigenvalues. Graphically, we establish that $1 < \sqrt{\lambda_1} < \pi/2$, $\pi/2 < \sqrt{\lambda_2} < 3\pi/2$, and $(2n-3)\pi/2 < \sqrt{\lambda_n} < (2n-1)\pi/2$ for $n = 3, 4, \ldots$. Moreover, $\sqrt{\lambda_n} \approx (n-1)\pi$ for a large n.

Problem 5. Consider the eigenvalue problem

 $\phi'' + \lambda \phi = 0$ with $\phi(0) = \phi'(0)$ and $\phi(1) = \beta \phi'(1)$.

For what values (if any) of β is $\lambda = 0$ an eigenvalue?

Solution: $\beta = 2$.

Detailed solution: In the case $\lambda = 0$, the general solution of the equation $\phi'' + \lambda \phi = 0$ is a linear function $\phi(x) = c_1 + c_2 x$, where c_1, c_2 are constants. Substituting it into the boundary conditions $\phi(0) = \phi'(0)$ and $\phi(1) = \beta \phi'(1)$, we obtain equalities $c_1 = c_2$, $c_1 + c_2 = \beta c_2$. They imply that $2c_1 = 2c_2 = \beta c_2$. If $\beta \neq 2$, it follows that $c_1 = c_2 = 0$, hence there are no eigenfunctions with eigenvalue $\lambda = 0$. If $\beta = 2$ then $\phi(x) = 1 + x$ is indeed an eigenfunction.