Solutions for homework assignment \#5

Problem 1. Consider the non-Sturm-Liouville differential equation

$$
\frac{d^{2} \phi}{d x^{2}}+\alpha(x) \frac{d \phi}{d x}+(\lambda \beta(x)+\gamma(x)) \phi=0 .
$$

Multiply this equation by $H(x)$. Determine $H(x)$ such that the equation may be reduced to the standard Sturm-Liouville form:

$$
\frac{d}{d x}\left(p(x) \frac{d \phi}{d x}\right)+(\lambda \sigma(x)+q(x)) \phi=0 .
$$

Given $\alpha(x), \beta(x)$, and $\gamma(x)$, what are $p(x), \sigma(x)$, and $q(x)$?
Solution: $\quad p(x)=e^{A(x)}, \sigma(x)=e^{A(x)} \beta(x)$, and $q(x)=e^{A(x)} \gamma(x)$, where A is an anti-derivative of α.

Detailed solution: The standard Sturm-Liouville equation can be rewritten as

$$
p(x) \phi^{\prime \prime}(x)+p^{\prime}(x) \phi^{\prime}(x)+(\lambda \sigma(x)+q(x)) \phi=0
$$

(assuming p is differentiable). This is to be the same as the equation

$$
H(x) \phi^{\prime \prime}(x)+H(x) \alpha(x) \phi^{\prime}(x)+(\lambda H(x) \beta(x)+H(x) \gamma(x)) \phi(x)=0 .
$$

It follows that $p=H, p^{\prime}=H \alpha, \sigma=H \beta$, and $q=H \gamma$. We expect H to be positive. Then the first two relations imply that

$$
\frac{p^{\prime}}{p}=\alpha \quad \Longrightarrow \quad \log p=\int \alpha(x) d x \quad \Longrightarrow \quad p=\exp \left(\int \alpha(x) d x\right) .
$$

Consequently, $\sigma=p \beta$ and $q=p \gamma$.

Problem 2. Consider

$$
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+\alpha u,
$$

where c, ρ, K_{0}, α are functions of x, subject to

$$
u(0, t)=u(L, t)=0, \quad u(x, 0)=f(x)
$$

Assume that the appropriate eigenfunctions are known.
(i) Show that the eigenvalues are positive if $\alpha<0$.
(ii) Solve the initial value problem.
(iii) Briefly discuss $\lim _{t \rightarrow+\infty} u(x, t)$.

Solution:

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n}} \phi_{n}(x)
$$

where $\lambda_{1}<\lambda_{2}<\ldots$ are eigenvalues of the Sturm-Liouville eigenvalue problem

$$
\left(K_{0} \phi^{\prime}\right)^{\prime}+\alpha \phi+\lambda c \rho \phi=0, \quad \phi(0)=\phi(L)=0,
$$

$\phi_{1}, \phi_{2}, \ldots$ are the corresponding eigenfunctions, and

$$
c_{n}=\frac{\int_{0}^{L} f(x) \phi_{n}(x) c(x) \rho(x) d x}{\int_{0}^{L}\left|\phi_{n}(x)\right|^{2} c(x) \rho(x) d x}
$$

If $\lambda_{1}>0$ then $\lim _{t \rightarrow+\infty} u(x, t)=0$.
Detailed solution: We search for the solution of the initial-boundary value problem as a superposition of solutions $u(x, t)=\phi(x) G(t)$ with separated variables of the differential equation that satisfy the boundary conditions.

Substituting $u(x, t)=\phi(x) G(t)$ into the differential equation, we obtain

$$
\begin{gathered}
c(x) \rho(x) \phi(x) G^{\prime}(t)=\left(K_{0}(x) \phi^{\prime}(x)\right)^{\prime} G(t)+\alpha \phi(x) G(t), \\
\frac{G^{\prime}(t)}{G(t)}=\frac{\left(K_{0}(x) \phi^{\prime}(x)\right)^{\prime}+\alpha \phi(x)}{c(x) \rho(x) \phi(x)} .
\end{gathered}
$$

Since the left-hand side does not depend on x while the right-hand side does not depend on t, it follows that

$$
\frac{G^{\prime}(t)}{G(t)}=\frac{\left(K_{0}(x) \phi^{\prime}(x)\right)^{\prime}+\alpha \phi(x)}{c(x) \rho(x) \phi(x)}=-\lambda
$$

where λ is a constant. Then

$$
G^{\prime}=-\lambda G, \quad\left(K_{0} \phi^{\prime}\right)^{\prime}+\alpha \phi+\lambda c \rho \phi=0
$$

Conversely, if functions G and ϕ are solutions of the above ODEs for the same value of λ, then $u(x, t)=\phi(x) G(t)$ is a solution of the given PDE.

Substituting $u(x, t)=\phi(x) G(t)$ into the boundary conditions, we get

$$
\phi(0) G(t)=0, \quad \phi(L) G(t)=0
$$

It is no loss to assume that G is not identically zero. Then the boundary conditions are satisfied if and only if $\phi(0)=\phi(L)=0$.

To determine ϕ, we have a regular Sturm-Liouville eigenvalue problem

$$
\left(K_{0} \phi^{\prime}\right)^{\prime}+\alpha \phi+\lambda c \rho \phi=0, \quad \phi(0)=\phi(L)=0 .
$$

This problem has infinitely many eigenvalues $\lambda_{1}<\lambda_{2}<\ldots$. Let ϕ_{n} denote an eigenfunction corresponding to the eigenvalue λ_{n}. Then ϕ_{n} is determined up to multiplying by a scalar. λ_{n} and ϕ_{n} are related through the Rayleigh quotient

$$
\lambda_{n}=\frac{-\left.K_{0} \phi_{n} \phi_{n}^{\prime}\right|_{0} ^{L}+\int_{0}^{L}\left(K_{0}\left|\phi_{n}^{\prime}\right|^{2}-\alpha\left|\phi_{n}\right|^{2}\right) d x}{\int_{0}^{L} c \rho\left|\phi_{n}\right|^{2} d x}
$$

Since $\phi_{n}(0)=\phi_{n}(L)=0$, the non-integral term vanishes. If $\alpha<0$ then it follows that $\lambda_{n}>0$.
The function G is to be determined from the equation $G^{\prime}=-\lambda G$. The general solution of this equation is $G(t)=c_{0} e^{-\lambda t}$, where c_{0} is a constant.

Thus we obtain the following solutions of the heat equation satisfying the boundary conditions:

$$
u_{n}(x, t)=e^{-\lambda_{n}} \phi_{n}(x), \quad n=1,2, \ldots
$$

A superposition of these solutions is a series

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n}} \phi_{n}(x)
$$

where c_{1}, c_{2}, \ldots are constants. Substituting the series into the initial condition $u(x, 0)=f(x)$, we get

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)
$$

Hence the initial condition is satisfied if c_{n} are coefficients of the generalized Fourier series of f, that is, if

$$
c_{n}=\frac{\int_{0}^{L} f(x) \phi_{n}(x) c(x) \rho(x) d x}{\int_{0}^{L}\left|\phi_{n}(x)\right|^{2} c(x) \rho(x) d x} .
$$

If all eigenvalues are positive then the solution $u(x, t)$ vanishes as $t \rightarrow+\infty$ because each term of the corresponding series contains a decaying factor $e^{-\lambda_{n}}$.

Problem 3. A Sturm-Liouville problem is called self-adjoint if

$$
\left.p\left(u v^{\prime}-v u^{\prime}\right)\right|_{a} ^{b}=0
$$

for any two functions u and v satisfying the boundary conditions. Show that the following yield self-adjoint problems:
(i) $\phi^{\prime}(0)=0$ and $\phi(L)=0$;
(ii) $\phi^{\prime}(0)-h \phi(0)=0$ and $\phi^{\prime}(L)=0$.

Solution: (i) Suppose that functions u and v satisfy the boundary conditions $u^{\prime}(0)=v^{\prime}(0)=0$ and $u(L)=v(L)=0$. The first condition implies that $u(0) v^{\prime}(0)-v(0) u^{\prime}(0)=0$ while the second one implies that $u(L) v^{\prime}(L)-v(L) u^{\prime}(L)=0$. It follows that

$$
\left.p\left(u v^{\prime}-v u^{\prime}\right)\right|_{0} ^{L}=0
$$

(ii) Suppose that functions u and v satisfy the boundary conditions $u^{\prime}(0)-h u(0)=v^{\prime}(0)-h v(0)=0$ and $u^{\prime}(L)=v^{\prime}(L)=0$. The first condition implies that $u(0) v^{\prime}(0)-v(0) u^{\prime}(0)=u(0) \cdot h v(0)-v(0)$. $h u(0)=0$ while the second one implies that $u(L) v^{\prime}(L)-v(L) u^{\prime}(L)=0$. It follows that

$$
\left.p\left(u v^{\prime}-v u^{\prime}\right)\right|_{0} ^{L}=0
$$

Problem 4. Consider the boundary value problem

$$
\phi^{\prime \prime}+\lambda \phi=0 \quad \text { with } \quad \phi(0)-\phi^{\prime}(0)=0, \quad \phi(1)+\phi^{\prime}(1)=0
$$

(i) Using the Rayleigh quotient, show that $\lambda \geq 0$. Why is $\lambda>0$?
(ii) Show that

$$
\tan \sqrt{\lambda}=\frac{2 \sqrt{\lambda}}{\lambda-1}
$$

Determine the eigenvalues graphically. Estimate the large eigenvalues.

Solution: $\quad \sqrt{\lambda_{n}} \sim(n-1) \pi$ as $n \rightarrow \infty$.
Detailed solution: (i) The Rayleigh quotient relates an eigenfunction ϕ to the corresponding eigenvalue λ :

$$
\lambda=\frac{-\left.\phi \phi^{\prime}\right|_{0} ^{1}+\int_{0}^{1}\left|\phi^{\prime}(x)\right|^{2} d x}{\int_{0}^{1}|\phi(x)|^{2} d x}
$$

The boundary conditions imply that

$$
-\left.\phi \phi^{\prime}\right|_{0} ^{1}=-\phi(1) \phi^{\prime}(1)+\phi(0) \phi^{\prime}(0)=|\phi(1)|^{2}+|\phi(0)|^{2} \geq 0
$$

It follows that $\lambda \geq 0$. Furthermore, if $\lambda=0$ then $\phi(0)=\phi(1)=0$ and ϕ^{\prime} is identically zero, which is not possible since then ϕ is also identically zero. Thus $\lambda>0$.
(ii) For any $\lambda>0$ the general solution of the equation $\phi^{\prime \prime}+\lambda \phi=0$ is $\phi(x)=c_{1} \cos \mu x+c_{2} \sin \mu x$, where $\mu=\sqrt{\lambda}$ and c_{1}, c_{2} are constants. Substituting this into the boundary conditions $\phi(0)=\phi^{\prime}(0)$ and $\phi(1)=-\phi^{\prime}(1)$, we obtain

$$
c_{1}=c_{2} \mu, \quad c_{1} \cos \mu+c_{2} \sin \mu=c_{1} \mu \sin \mu-c_{2} \mu \cos \mu
$$

It follows that

$$
\begin{gathered}
c_{2}(\mu \cos \mu+\sin \mu)=c_{2}\left(\mu^{2} \sin \mu-\mu \cos \mu\right) \\
c_{2}\left(\left(\mu^{2}-1\right) \sin \mu-2 \mu \cos \mu\right)=0
\end{gathered}
$$

A nonzero solution of the boundary value problem exists if and only if $\left(\mu^{2}-1\right) \sin \mu=2 \mu \cos \mu$. Since $\cos 1 \neq 0$, the latter equality implies that $\mu^{2} \neq 1$ and $\cos \mu \neq 0$. Hence it is equivalent to

$$
\tan \mu=\frac{2 \mu}{\mu^{2}-1}
$$

It remains to recall that $\mu=\sqrt{\lambda}$.

Let $0<\lambda_{1}<\lambda_{2}<\ldots$ be the eigenvalues. Graphically, we establish that $1<\sqrt{\lambda_{1}}<\pi / 2$, $\pi / 2<\sqrt{\lambda_{2}}<3 \pi / 2$, and $(2 n-3) \pi / 2<\sqrt{\lambda_{n}}<(2 n-1) \pi / 2$ for $n=3,4, \ldots$. Moreover, $\sqrt{\lambda_{n}} \approx(n-1) \pi$ for a large n.

Problem 5. Consider the eigenvalue problem

$$
\phi^{\prime \prime}+\lambda \phi=0 \quad \text { with } \quad \phi(0)=\phi^{\prime}(0) \text { and } \phi(1)=\beta \phi^{\prime}(1) .
$$

For what values (if any) of β is $\lambda=0$ an eigenvalue?
Solution: $\beta=2$.
Detailed solution: In the case $\lambda=0$, the general solution of the equation $\phi^{\prime \prime}+\lambda \phi=0$ is a linear function $\phi(x)=c_{1}+c_{2} x$, where c_{1}, c_{2} are constants. Substituting it into the boundary conditions $\phi(0)=\phi^{\prime}(0)$ and $\phi(1)=\beta \phi^{\prime}(1)$, we obtain equalities $c_{1}=c_{2}, c_{1}+c_{2}=\beta c_{2}$. They imply that $2 c_{1}=2 c_{2}=\beta c_{2}$. If $\beta \neq 2$, it follows that $c_{1}=c_{2}=0$, hence there are no eigenfunctions with eigenvalue $\lambda=0$. If $\beta=2$ then $\phi(x)=1+x$ is indeed an eigenfunction.

