
Solutions for

homework assignment #5

Problem 1. Consider the non-Sturm-Liouville differential equation

d2φ

dx2
+ α(x)

dφ

dx
+ (λβ(x) + γ(x))φ = 0.

Multiply this equation by H(x). Determine H(x) such that the equation may be reduced to
the standard Sturm-Liouville form:

d

dx

(

p(x)
dφ

dx

)

+ (λσ(x) + q(x))φ = 0.

Given α(x), β(x), and γ(x), what are p(x), σ(x), and q(x)?

Solution: p(x) = eA(x), σ(x) = eA(x)β(x), and q(x) = eA(x)γ(x), where A is an anti-derivative
of α.

Detailed solution: The standard Sturm-Liouville equation can be rewritten as

p(x)φ′′(x) + p′(x)φ′(x) + (λσ(x) + q(x))φ = 0

(assuming p is differentiable). This is to be the same as the equation

H(x)φ′′(x) + H(x)α(x)φ′(x) + (λH(x)β(x) + H(x)γ(x))φ(x) = 0.

It follows that p = H, p′ = Hα, σ = Hβ, and q = Hγ. We expect H to be positive. Then the first
two relations imply that

p′

p
= α =⇒ log p =

∫

α(x) dx =⇒ p = exp
(

∫

α(x) dx
)

.

Consequently, σ = pβ and q = pγ.

Problem 2. Consider

cρ
∂u

∂t
=

∂

∂x

(

K0
∂u

∂x

)

+ αu,

where c, ρ,K0, α are functions of x, subject to

u(0, t) = u(L, t) = 0, u(x, 0) = f(x).

Assume that the appropriate eigenfunctions are known.

(i) Show that the eigenvalues are positive if α < 0.
(ii) Solve the initial value problem.
(iii) Briefly discuss lim

t→+∞

u(x, t).

Solution:

u(x, t) =
∑∞

n=1
cne−λnφn(x),

where λ1 < λ2 < . . . are eigenvalues of the Sturm-Liouville eigenvalue problem

(K0φ
′)′ + αφ + λcρφ = 0, φ(0) = φ(L) = 0,
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φ1, φ2, . . . are the corresponding eigenfunctions, and

cn =

∫ L

0
f(x)φn(x)c(x)ρ(x) dx

∫ L

0
|φn(x)|2c(x)ρ(x) dx

.

If λ1 > 0 then lim
t→+∞

u(x, t) = 0.

Detailed solution: We search for the solution of the initial-boundary value problem as a
superposition of solutions u(x, t) = φ(x)G(t) with separated variables of the differential equation that
satisfy the boundary conditions.

Substituting u(x, t) = φ(x)G(t) into the differential equation, we obtain

c(x)ρ(x)φ(x)G ′(t) = (K0(x)φ′(x))′G(t) + αφ(x)G(t),

G ′(t)

G(t)
=

(K0(x)φ′(x))′ + αφ(x)

c(x)ρ(x)φ(x)
.

Since the left-hand side does not depend on x while the right-hand side does not depend on t, it follows
that

G ′(t)

G(t)
=

(K0(x)φ′(x))′ + αφ(x)

c(x)ρ(x)φ(x)
= −λ,

where λ is a constant. Then

G ′ = −λG, (K0φ
′)′ + αφ + λcρφ = 0.

Conversely, if functions G and φ are solutions of the above ODEs for the same value of λ, then
u(x, t) = φ(x)G(t) is a solution of the given PDE.

Substituting u(x, t) = φ(x)G(t) into the boundary conditions, we get

φ(0)G(t) = 0, φ(L)G(t) = 0.

It is no loss to assume that G is not identically zero. Then the boundary conditions are satisfied if
and only if φ(0) = φ(L) = 0.

To determine φ, we have a regular Sturm-Liouville eigenvalue problem

(K0φ
′)′ + αφ + λcρφ = 0, φ(0) = φ(L) = 0.

This problem has infinitely many eigenvalues λ1 < λ2 < . . . . Let φn denote an eigenfunction corre-
sponding to the eigenvalue λn. Then φn is determined up to multiplying by a scalar. λn and φn are
related through the Rayleigh quotient

λn =

−K0φnφ′

n

∣

∣

∣

L

0
+

∫ L

0
(K0|φ′

n|2 − α|φn|2) dx

∫ L

0
cρ|φn|2 dx

.

Since φn(0) = φn(L) = 0, the non-integral term vanishes. If α < 0 then it follows that λn > 0.
The function G is to be determined from the equation G ′ = −λG. The general solution of this

equation is G(t) = c0e
−λt, where c0 is a constant.

Thus we obtain the following solutions of the heat equation satisfying the boundary conditions:

un(x, t) = e−λnφn(x), n = 1, 2, . . .
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A superposition of these solutions is a series

u(x, t) =
∑∞

n=1
cne−λnφn(x),

where c1, c2, . . . are constants. Substituting the series into the initial condition u(x, 0) = f(x), we get

f(x) =
∑∞

n=1
cnφn(x).

Hence the initial condition is satisfied if cn are coefficients of the generalized Fourier series of f , that
is, if

cn =

∫ L

0
f(x)φn(x)c(x)ρ(x) dx

∫ L

0
|φn(x)|2c(x)ρ(x) dx

.

If all eigenvalues are positive then the solution u(x, t) vanishes as t → +∞ because each term of
the corresponding series contains a decaying factor e−λn .

Problem 3. A Sturm-Liouville problem is called self-adjoint if

p (uv′ − vu′)
∣

∣

∣

b

a
= 0

for any two functions u and v satisfying the boundary conditions. Show that the following yield
self-adjoint problems:

(i) φ′(0) = 0 and φ(L) = 0;
(ii) φ′(0) − hφ(0) = 0 and φ′(L) = 0.

Solution: (i) Suppose that functions u and v satisfy the boundary conditions u′(0) = v′(0) = 0
and u(L) = v(L) = 0. The first condition implies that u(0)v′(0) − v(0)u′(0) = 0 while the second one
implies that u(L)v′(L) − v(L)u′(L) = 0. It follows that

p (uv′ − vu′)
∣

∣

∣

L

0
= 0.

(ii) Suppose that functions u and v satisfy the boundary conditions u′(0)−hu(0) = v′(0)−hv(0) = 0
and u′(L) = v′(L) = 0. The first condition implies that u(0)v′(0) − v(0)u′(0) = u(0) · hv(0) − v(0) ·
hu(0) = 0 while the second one implies that u(L)v′(L) − v(L)u′(L) = 0. It follows that

p (uv′ − vu′)
∣

∣

∣

L

0
= 0.

Problem 4. Consider the boundary value problem

φ′′ + λφ = 0 with φ(0) − φ′(0) = 0, φ(1) + φ′(1) = 0.

(i) Using the Rayleigh quotient, show that λ ≥ 0. Why is λ > 0?
(ii) Show that

tan
√

λ =
2
√

λ

λ − 1
.

Determine the eigenvalues graphically. Estimate the large eigenvalues.

3



Solution:
√

λn ∼ (n − 1)π as n → ∞.

Detailed solution: (i) The Rayleigh quotient relates an eigenfunction φ to the corresponding
eigenvalue λ:

λ =

−φφ′

∣

∣

∣

1

0
+

∫ 1

0
|φ′(x)|2 dx

∫ 1

0
|φ(x)|2 dx

.

The boundary conditions imply that

−φφ′

∣

∣

∣

1

0
= −φ(1)φ′(1) + φ(0)φ′(0) = |φ(1)|2 + |φ(0)|2 ≥ 0.

It follows that λ ≥ 0. Furthermore, if λ = 0 then φ(0) = φ(1) = 0 and φ′ is identically zero, which is
not possible since then φ is also identically zero. Thus λ > 0.

(ii) For any λ > 0 the general solution of the equation φ′′ + λφ = 0 is φ(x) = c1 cos µx + c2 sinµx,
where µ =

√
λ and c1, c2 are constants. Substituting this into the boundary conditions φ(0) = φ′(0)

and φ(1) = −φ′(1), we obtain

c1 = c2µ, c1 cos µ + c2 sin µ = c1µ sin µ − c2µ cos µ.

It follows that
c2(µ cos µ + sinµ) = c2(µ

2 sinµ − µ cos µ),

c2((µ
2 − 1) sin µ − 2µ cos µ) = 0.

A nonzero solution of the boundary value problem exists if and only if (µ2 − 1) sin µ = 2µ cos µ. Since
cos 1 6= 0, the latter equality implies that µ2 6= 1 and cosµ 6= 0. Hence it is equivalent to

tan µ =
2µ

µ2 − 1
.

It remains to recall that µ =
√

λ.

1

1 π
2

3π
2

µ

tan µ

2µ

µ2
−1
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Let 0 < λ1 < λ2 < . . . be the eigenvalues. Graphically, we establish that 1 <
√

λ1 < π/2,
π/2 <

√
λ2 < 3π/2, and (2n − 3)π/2 <

√
λn < (2n − 1)π/2 for n = 3, 4, . . . . Moreover,√

λn ≈ (n − 1)π for a large n.

Problem 5. Consider the eigenvalue problem

φ′′ + λφ = 0 with φ(0) = φ′(0) and φ(1) = βφ′(1).

For what values (if any) of β is λ = 0 an eigenvalue?

Solution: β = 2.

Detailed solution: In the case λ = 0, the general solution of the equation φ′′ + λφ = 0
is a linear function φ(x) = c1 + c2x, where c1, c2 are constants. Substituting it into the boundary
conditions φ(0) = φ′(0) and φ(1) = βφ′(1), we obtain equalities c1 = c2, c1 + c2 = βc2. They imply
that 2c1 = 2c2 = βc2. If β 6= 2, it follows that c1 = c2 = 0, hence there are no eigenfunctions with
eigenvalue λ = 0. If β = 2 then φ(x) = 1 + x is indeed an eigenfunction.
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