Homework assignment \#6

(due Wednesday, October 25)

Problem 1. Solve the following boundary value problem for Laplace's equation in an ellipse

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad(x, y) \in D \\
& u(x, y)=f(x), \quad(x, y) \in \partial D
\end{aligned}
$$

where

$$
D=\left\{(x, y):\left(\frac{x}{b_{1}}\right)^{2}+\left(\frac{y}{b_{2}}\right)^{2} \leq 1\right\}, \quad b_{1}>b_{2}>0
$$

and f is a continuous function on $\left[-b_{1}, b_{1}\right]$.
To solve the problem, you will have to use elliptic coordinates (μ, ν) defined by

$$
x=a \cosh \mu \cos \nu, \quad y=a \sinh \mu \sin \nu,
$$

where $a>0$ is a constant. Here $0 \leq \mu<\infty,-\pi<\nu \leq \pi$.
Coordinate lines of the elliptic coordinates are confocal ellipses and hyperbolas with focuses at points $(a, 0)$ and $(-a, 0)$. For a suitably chosen $a>0$, the ellipse $\left(x / b_{1}\right)^{2}+\left(y / b_{2}\right)^{2}=1$ is the coordinate line $\mu=M$.

(i) Find relations between a, M and b_{1}, b_{2}. Solve for a and M if possible.
(ii) Which points in the plane are singular for the elliptic coordinates?
(iii) Find the formula for Laplace's operator in elliptic coordinates.

In elliptic coordinates, the boundary condition is given by $u(M, \nu)=g(\nu)$, where g is a continuous function on $(-\pi, \pi]$.
(iv) Find the function g assuming $f(x)$ is given.
(v) Using the fact that the solution $u(x, y)$ of the boundary value problem is unique, show that $u(x, y)$ is even as a function of y.

Hint: Show that $u(x,-y)$ is also a solution.
(vi) Show that $u(x, y)$ satisfies the boundary condition

$$
\frac{\partial u}{\partial y}(x, 0)=0 \quad\left(-b_{1}<x<b_{1}\right) .
$$

(vii) Show that the solution $u(\mu, \nu)$ is even as a function of ν.
(viii) Show that $u(\mu, \nu)$ satisfies the boundary conditions

$$
\frac{\partial u}{\partial \nu}(\mu, 0)=\frac{\partial u}{\partial \nu}(\mu, \pi)=0 \quad(0<\mu<M)
$$

and

$$
\frac{\partial u}{\partial \mu}(0, \nu)=0 \quad(0<\nu<\pi)
$$

(ix) Solve the following boundary value problem for Laplace's equation in a half-ellipse

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial \mu^{2}}+\frac{\partial^{2} u}{\partial \nu^{2}}=0 \quad(0<\mu<M, 0<\nu<\pi) \\
& \frac{\partial u}{\partial \nu}(\mu, 0)=\frac{\partial u}{\partial \nu}(\mu, \pi)=0 \quad(0<\mu<M) \\
& \frac{\partial u}{\partial \mu}(0, \nu)=0, \quad u(M, \nu)=g(\nu) \quad(0<\nu<\pi)
\end{aligned}
$$

(x) Find a formula for the solution of Problem 1 in elliptic coordinates and, if possible, in Cartesian coordinates.

