Homework assignment #7 (due Friday, November 3)

Problem 1. Consider the two-dimensional eigenvalue problem with $\sigma > 0$

 $abla^2 \phi + \lambda \sigma(x, y) \phi = 0$ in the domain D, $\phi = 0$ on the boundary ∂D .

(i) Prove that $\lambda \geq 0$.

(ii) Is $\lambda = 0$ an eigenvalue, and if so, what is the eigenfunction?

Hint: Derive the Rayleigh quotient for this particular problem.

Problem 2. Solve as simply as possible an initial-boundary value problem for the wave equation in a circle:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \, \nabla^2 u$$

with $u(a, \theta, t) = 0$, $u(r, \theta, 0) = 0$, and $\frac{\partial u}{\partial t}(r, \theta, 0) = \alpha(r) \sin 3\theta$.

Problem 3. Consider a vibrating quarter-circular membrane, 0 < r < a, $0 < \theta < \pi/2$, with u = 0 on the entire boundary.

- (i) Determine an expression for the frequencies of vibration.
- (ii) Solve the initial value problem if $u(r, \theta, 0) = g(r, \theta), \frac{\partial u}{\partial t}(r, \theta, 0) = 0.$

Problem 4. Consider Bessel's differential equation

$$z^{2}\frac{d^{2}f}{dz^{2}} + z\frac{df}{dz} + (z^{2} - m^{2})f = 0.$$

(i) Let $f = y/z^{1/2}$. Derive that

$$\frac{d^2y}{dz^2} + \left(1 + \frac{1}{4}z^{-2} - m^2 z^{-2}\right)y = 0.$$

(ii) Using (i), determine exact expressions for $J_{1/2}(z)$ and $Y_{1/2}(z)$. Use and verify the asymptotics as $z \to 0$ and as $z \to \infty$.

Problem 5. Solve Laplace's equation inside a circular cylinder subject to the boundary conditions (in the cylindrical coordinates r, θ, z)

$$u(r, \theta, 0) = 0,$$
 $u(r, \theta, H) = \beta(r) \cos 3\theta,$ $\frac{\partial u}{\partial r}(a, \theta, z) = 0.$

Under what condition does a solution exist?