Homework assignment \#7
 (due Friday, November 3)

Problem 1. Consider the two-dimensional eigenvalue problem with $\sigma>0$

$$
\begin{aligned}
& \nabla^{2} \phi+\lambda \sigma(x, y) \phi=0 \quad \text { in the domain } D, \\
& \phi=0 \quad \text { on the boundary } \partial D .
\end{aligned}
$$

(i) Prove that $\lambda \geq 0$.
(ii) Is $\lambda=0$ an eigenvalue, and if so, what is the eigenfunction?

Hint: Derive the Rayleigh quotient for this particular problem.
Problem 2. Solve as simply as possible an initial-boundary value problem for the wave equation in a circle:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u
$$

with $u(a, \theta, t)=0, u(r, \theta, 0)=0$, and $\frac{\partial u}{\partial t}(r, \theta, 0)=\alpha(r) \sin 3 \theta$.
Problem 3. Consider a vibrating quarter-circular membrane, $0<r<a, 0<\theta<\pi / 2$, with $u=0$ on the entire boundary.
(i) Determine an expression for the frequencies of vibration.
(ii) Solve the initial value problem if $u(r, \theta, 0)=g(r, \theta), \frac{\partial u}{\partial t}(r, \theta, 0)=0$.

Problem 4. Consider Bessel's differential equation

$$
z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}+\left(z^{2}-m^{2}\right) f=0
$$

(i) Let $f=y / z^{1 / 2}$. Derive that

$$
\frac{d^{2} y}{d z^{2}}+\left(1+\frac{1}{4} z^{-2}-m^{2} z^{-2}\right) y=0
$$

(ii) Using (i), determine exact expressions for $J_{1 / 2}(z)$ and $Y_{1 / 2}(z)$. Use and verify the asymptotics as $z \rightarrow 0$ and as $z \rightarrow \infty$.

Problem 5. Solve Laplace's equation inside a circular cylinder subject to the boundary conditions (in the cylindrical coordinates r, θ, z)

$$
u(r, \theta, 0)=0, \quad u(r, \theta, H)=\beta(r) \cos 3 \theta, \quad \frac{\partial u}{\partial r}(a, \theta, z)=0
$$

Under what condition does a solution exist?

