Homework assignment \#8 (due Friday, November 10)

Problem 1. Solve

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+e^{-2 t} \sin 5 x
$$

subject to $u(0, t)=1, u(\pi, t)=0$, and $u(x, 0)=0$.

Problem 2. Solve

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

subject to $u(0, t)=0, u(L, t)=t$, and $u(x, 0)=0$.

Problem 3. Solve the following example of Poisson's equation:

$$
\nabla^{2} u=e^{2 y} \sin x \quad(0<x<\pi, 0<y<L)
$$

subject to the following boundary conditions:

$$
u(0, y)=u(\pi, y)=0, \quad u(x, 0)=0, \quad u(x, L)=f(x)
$$

Problem 4. Consider

$$
f(x)= \begin{cases}0, & x<x_{0} \\ 1 / \Delta, & x_{0}<x<x_{0}+\Delta \\ 0, & x>x_{0}+\Delta\end{cases}
$$

Assume that $-L<x_{0}<x_{0}+\Delta<L$. Determine the complex Fourier coefficients c_{n} of the function f on the interval $[-L, L]$.

Problem 5. If $F(\omega)$ is the Fourier transform of $f(x)$, show that the inverse Fourier transform of $e^{i \omega \beta} F(\omega)$ is $f(x-\beta)$. This result is known as the shift theorem for Fourier transforms.

