Math 412-501

Theory of Partial Differential Equations

Lecture 11: Review for Exam 1.

PDEs: two variables

heat equation:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Laplace's equation:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

These equations are linear homogeneous.

PDEs: three variables

heat equation:

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Laplace's equation: $\quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$

One-dimensional heat equation

Describes heat conduction in a rod:

$$
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q
$$

$K_{0}=K_{0}(x), c=c(x), \rho=\rho(x), Q=Q(x, t)$.
Assuming K_{0}, c, ρ are constant (uniform rod) and $Q=0$ (no heat sources), we obtain

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

where $k=K_{0}(c \rho)^{-1}$.

One-dimensional wave equation

Describes vibrations of a perfectly elastic string:

$$
\rho(x) \frac{\partial^{2} u}{\partial t^{2}}=T_{0} \frac{\partial^{2} u}{\partial x^{2}}+\rho(x) Q(x, t)
$$

Assuming $\rho=$ const and $Q=0$, we obtain

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

where $c^{2}=T_{0} / \rho$.

Initial-boundary value problem

$\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L, \quad 0 \leq t \leq T$.
Initial condition: $u(x, 0)=f(x)$, where
$f:[0, L] \rightarrow \mathbb{R}$.
Boundary conditions: $u(0, t)=u_{1}(t)$,
$\frac{\partial u}{\partial x}(L, t)=\phi_{2}(t)$, where $u_{1}, \phi_{2}:[0, T] \rightarrow \mathbb{R}$.
Initial-boundary value problem $=\mathrm{PDE}+$ initial condition(s) + boundary conditions

D'Alembert's solution of 1D wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, \quad-\infty<t<\infty
$$

Change of independent variables:

$$
w=x+c t, \quad z=x-c t
$$

Wave equation in new coordinates: $\frac{\partial^{2} u}{\partial w \partial z}=0$.
General solution: $u(w, z)=B(z)+C(w)$,
where $B, C: \mathbb{R} \rightarrow \mathbb{R}$ are arbitrary functions.
General solution of the 1 D wave equation:

$$
u(x, t)=B(x-c t)+C(x+c t)
$$

Initial value problem

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x, t<\infty \\
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad-\infty<x<\infty .
\end{gathered}
$$

General solution: $u(x, t)=B(x-c t)+C(x+c t)$.
We substitute it into initial conditions:
$B(x)+C(x)=f(x), \quad-c B^{\prime}(x)+c C^{\prime}(x)=g(x)$.
Unknown functions B and C can be found from these equations.

The initial value problem has a unique solution:

$$
\begin{aligned}
u(x, t)= & \frac{1}{2}(f(x-c t)+f(x+c t) \\
& +G(x+c t)-G(x-c t))
\end{aligned}
$$

where G is an arbitrary anti-derivative of g / c.
Another representation of this solution:

$$
u(x, t)=\frac{f(x-c t)+f(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\xi) d \xi
$$

(d'Alembert's formula)

Semi-infinite string

Initial-boundary value problem

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad x \geq 0
$$

$u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad x \geq 0$;
$u(0, t)=0 \quad$ (fixed end) .
General solution: $u(x, t)=B(x-c t)+C(x+c t)$.
We substitute it into initial and boundary conditions:

$$
\begin{aligned}
& B(x)+C(x)=f(x), \quad-c B^{\prime}(x)+c C^{\prime}(x)=g(x), \\
& x \geq 0 ; \quad B(-c t)+C(c t)=0 .
\end{aligned}
$$

Unknown functions B and C can be found from these equations.

Another approach

Initial-boundary value problem has a unique solution and this solution can be extended to the whole plane.

Hence the problem can be solved as follows:

- extend f and g to the whole line somehow;
- solve the initial value problem in the whole plane;
- if the boundary condition holds, we are done!

Hints on how to satisfy the boundary condition:

- the boundary condition $u(0, t)=0$ (fixed end) holds if the (extended) functions f and g are odd; - The boundary condition $\frac{\partial u}{\partial x}(0, t)=0$ (free end) holds if the (extended) functions f and g are even.

Separation of variables

The method applies to certain linear PDEs, for example, heat equation, wave equation, Laplace's equation.
Basic idea: to find a solution of the PDE (function of many variables) as the product of several functions, each depending only on one variable.
For example, $u(x, t)=B(x) C(t)$.

Heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

Suppose $u(x, t)=\phi(x) G(t)$. Then

$$
\frac{\partial u}{\partial t}=\phi(x) \frac{d G}{d t}, \quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{d^{2} \phi}{d x^{2}} G(t)
$$

Hence

$$
\phi(x) \frac{d G}{d t}=k \frac{d^{2} \phi}{d x^{2}} G(t)
$$

Divide both sides by $k \cdot \phi(x) \cdot G(t)=k \cdot u(x, t)$:

$$
\frac{1}{k G} \cdot \frac{d G}{d t}=\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}} .
$$

It follows that

$$
\frac{1}{k G} \cdot \frac{d G}{d t}=\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}}=-\lambda=\text { const. }
$$

λ is called the separation constant. The variables have been separated:

$$
\begin{aligned}
& \frac{d^{2} \phi}{d x^{2}}=-\lambda \phi \\
& \frac{d G}{d t}=-\lambda k G
\end{aligned}
$$

Proposition Suppose ϕ and G are solutions of the above ODEs for the same value of λ. Then $u(x, t)=\phi(x) G(t)$ is a solution of the heat equation.

Boundary value problem for the heat equation

$$
\begin{gathered}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L \\
u(0, t)=u(L, t)=0
\end{gathered}
$$

We are looking for solutions $u(x, t)=\phi(x) G(t)$.
PDE holds if

$$
\begin{aligned}
& \frac{d^{2} \phi}{d x^{2}}=-\lambda \phi, \\
& \frac{d G}{d t}=-\lambda k G
\end{aligned}
$$

for the same constant λ.
Boundary conditions hold if

$$
\phi(0)=\phi(L)=0 .
$$

Boundary value problem:

$$
\begin{gathered}
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi, \quad 0 \leq x \leq L \\
\phi(0)=\phi(L)=0
\end{gathered}
$$

There is an obvious solution: 0 .
When is it not unique?
If for some value of λ the boundary value problem has a nonzero solution ϕ, then this λ is called an eigenvalue and ϕ is called an eigenfunction.
The eigenvalue problem is to find all eigenvalues (and corresponding eigenfunctions).

Eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(L)=0
$$

We are looking only for real eigenvalues.
Three cases: $\lambda>0, \lambda=0, \lambda<0$.
Case 1: $\lambda>0 . \quad \phi(x)=C_{1} \cos \mu x+C_{2} \sin \mu x$, where $\lambda=\mu^{2}, \mu>0$.
$\phi(0)=\phi(L)=0 \Longrightarrow C_{1}=0, \quad C_{2} \sin \mu L=0$.
A nonzero solution exists if $\mu L=n \pi, n \in \mathbb{Z}$.
So $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=1,2, \ldots$ are eigenvalues and $\phi_{n}(x)=\sin \frac{n \pi x}{L}$ are corresponding eigenfunctions.

Separation of variables: summary

Eigenvalue problem: $\phi^{\prime \prime}=-\lambda \phi, \phi(0)=\phi(L)=0$.
Eigenvalues: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=1,2, \ldots$
Eigenfunctions: $\phi_{n}(x)=\sin \frac{n \pi x}{L}$.
Solution of the heat equation: $u(x, t)=\phi(x) G(t)$.

$$
\frac{d G}{d t}=-\lambda k G \Longrightarrow G(t)=C_{0} \exp (-\lambda k t)
$$

Theorem For $n=1,2, \ldots$, the function

$$
u(x, t)=e^{-\lambda_{n} k t} \phi_{n}(x)=\exp \left(-\frac{n^{2} \pi^{2}}{L^{2}} k t\right) \sin \frac{n \pi x}{L}
$$

is a solution of the following boundary value problem for the heat equation:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, t)=u(L, t)=0
$$

How do we solve the initial-boundary value problem?

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L, \\
& u(x, 0)=f(x), \quad u(0, t)=u(L, t)=0 .
\end{aligned}
$$

- Expand the function f into a series

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

- Write the solution:

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{n^{2} \pi^{2}}{L^{2}} k t\right) \sin \frac{n \pi x}{L}
$$

(Fourier's solution)

Fourier's solution (insulated ends)

$$
\begin{gathered}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L \\
u(x, 0)=f(x), \quad \frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)=0
\end{gathered}
$$

- Expand the function f into a series

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} .
$$

- Write the solution:

$$
u(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \exp \left(-\frac{n^{2} \pi^{2}}{L^{2}} k t\right) \cos \frac{n \pi x}{L} .
$$

Fourier's solution (circular ring)

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad-L \leq x \leq L
$$

$u(x, 0)=f(t)$,
$u(-L, t)=u(L, t), \quad \frac{\partial u}{\partial x}(-L, t)=\frac{\partial u}{\partial x}(L, t)$.

- Expand the function f into a series

$$
f(x)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}\right) .
$$

- Write the solution:
$u(x, t)=A_{0}+\sum_{n=1}^{\infty} \exp \left(-\frac{n^{2} \pi^{2}}{L^{2}} k t\right)\left(A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}\right)$.

Fourier series

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

To each integrable function $f:[-L, L] \rightarrow \mathbb{R}$ we associate a Fourier series such that

$$
a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x
$$

and for $n \geq 1$,

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

Convergence theorem

Suppose $f:[-L, L] \rightarrow \mathbb{R}$ is a piecewise smooth function.
Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be the $2 L$-periodic extension of f.
Theorem The Fourier series of the function f converges everywhere. The sum at a point x is equal to $F(x)$ if F is continuous at x. Otherwise the sum is equal to

$$
\frac{F(x-)+F(x+)}{2}
$$

Function and its Fourier series

Fourier sine and cosine series

Suppose $f(x)$ is an integrable function on $[0, L]$.
The Fourier sine series of f

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

and the Fourier cosine series of f

$$
A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}
$$

are defined as follows:

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

$A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, \quad A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n \geq 1$.

Convergence Theorem If a function

$f:[0, L] \rightarrow \mathbb{R}$ is piecewise smooth then both
Fourier sine and Fourier cosine series of f converge to $f(x)$ at any point $0<x<L$ of continuity.

Proposition (i) The Fourier series of a function $f:[-L, L] \rightarrow \mathbb{R}$ contains only sines if the function is odd.
(ii) The Fourier series of a function
$f:[-L, L] \rightarrow \mathbb{R}$ contains only a constant and cosines if the function is even.

Fourier sine series of $f(x)=x$

Fourier cosine series of $f(x)=x$

Gibbs' phenomenon

The partial sum $p_{n}(x)$ attains its maximal value v_{n} on the interval $0 \leq x \leq L$ at two points x_{n}^{+}, x_{n}^{-} such that $x_{n}^{+} \rightarrow L$ and $x_{n}^{-} \rightarrow 0$ as $n \rightarrow \infty$.
Actually, $x_{n}^{-}=\frac{L}{2 n}, x_{n}^{+}=L-\frac{L}{2 n}$.
The maximal overshoot $v_{n}=p_{n}\left(x_{n}^{ \pm}\right)$satisfies $v_{1}>v_{2}>v_{3}>\ldots$ and $\lim _{n \rightarrow \infty} v_{n}=v_{\infty}>100$.
Actually, $v_{\infty}=\frac{200}{\pi} \int_{0}^{\pi} \frac{\sin y}{y} d y \approx 117.898$
The Gibbs phenomenon occurs for any piecewise smooth function at any discontinuity. The ultimate overshoot rate of $\approx 9 \%$ of the jump is universal.

Example

$f(x)=e^{x}$.
Find the Fourier cosine series $(0 \leq x \leq L)$.

$$
A_{0}=\frac{1}{L} \int_{0}^{L} e^{x} d x
$$

For $n \geq 1$,

$$
A_{n}=\frac{2}{L} \int_{0}^{L} e^{x} \cos \frac{n \pi x}{L} d x
$$

Table of integrals:

$$
\int e^{a x} \cos b x d x=\frac{e^{a x}(a \cos b x+b \sin b x)}{a^{2}+b^{2}}
$$

