Math 412-501
Theory of Partial Differential Equations

Lecture 11: Review for Exam 1.



PDEs: two variables

heat equation:

wave equation:

Laplace's equation:

o0 _,
ot  Ox?

Pu_
o2~ ox2
o,
ox2  Oy?

These equations are linear homogeneous.



PDEs: three variables

heat equation:

wave equation:

Laplace's equation:
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One-dimensional heat equation

Describes heat conduction in a rod:
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Ko = Ko(x), ¢ = c(x), p = p(x), Q@ = Q(x, t).

Assuming Kj, c, p are constant (uniform rod) and
Q = 0 (no heat sources), we obtain
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where k = Ky(cp)~L.



One-dimensional wave equation

Describes vibrations of a perfectly elastic string:
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Assuming p = const and @ = 0, we obtain
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where c? = Ty/p.



Initial-boundary value problem

du 0%u
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Initial condition: u(x,0) = f(x), where
f:[0,L] — R.

Boundary conditions: u(0,t) = u(t),

%(L, t) = ¢o(t), where uy, ¢, : [0, T] — R.

Initial-boundary value problem = PDE + initial
condition(s) + boundary conditions




D’Alembert’s solution of 1D wave equation
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Change of independent variables:
w=x+4ct, Zz=Xx—ct.
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General solution:  u(w, z) = B(z) + C(w),
where B, C : R — R are arbitrary functions.

Wave equation in new coordinates:

General solution of the 1D wave equation:

u(x,t) = B(x — ct) + C(x + ct)




Initial value problem

u 5 u
ﬁ—c @, —00 < X, t < 00,

u(x,0) = f(x), %(X,O) = g(x), —00 < x < o0.

General solution: u(x,t) = B(x — ct) + C(x + ct).
We substitute it into initial conditions:

B(x) 4+ C(x) = f(x), —cB'(x)+ cC'(x) = g(x).
Unknown functions B and C can be found from
these equations.



The initial value problem has a unique solution:

u(x, t) = %(f(x —ct) + f(x + ct)
4 G(x +ct) — G(x — ct))

where G is an arbitrary anti-derivative of g/c.

Another representation of this solution:
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(d’Alembert’s formula)
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Semi-infinite string
Initial-boundary value problem
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u(x,0) = f(x), Ou (X 0) =g(x), x>0;
u(0,t) =0 (flxed end).

General solution: u(x,t) = B(x — ct) + C(x + ct).
We substitute it into initial and boundary conditions:
B(x) + C(x) = f(x), —cB'(x)+ cC'(x)= g(x),
x > 0; B(—ct) + C(ct) = 0.

Unknown functions B and C can be found from
these equations.



Another approach

Initial-boundary value problem has a unique
solution and this solution can be extended to the
whole plane.

Hence the problem can be solved as follows:

e extend f and g to the whole line somehow;

e solve the initial value problem in the whole plane;
e if the boundary condition holds, we are done!

Hints on how to satisfy the boundary condition:

e the boundary condition u(0,t) = 0 (fixed end)

holds if the (extended) functions f and g are odd;
e The boundary condition £(0,t) = 0 (free end)
holds if the (extended) functions f and g are even.



Separation of variables

The method applies to certain linear PDEs, for
example, heat equation, wave equation, Laplace's
equation.

Basic idea: to find a solution of the PDE (function
of many variables) as the product of several
functions, each depending only on one variable.

For example, u(x, t) = B(x)C(t).



Heat equation
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Divide both sides by k - ¢(x) - G(t) = k - u(x, t):
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It follows that
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A is called the separation constant. The variables
have been separated:

%=X,
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Proposition Suppose ¢ and G are solutions of the
above ODEs for the same value of A\. Then
u(x, t) = ¢(x)G(t) is a solution of the heat
equation.



Boundary value problem for the heat equation
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u(0,t) = u(L,t) = 0.

0<x<IL,

We are looking for solutions u(x,t) = ¢(x)G(t).
PDE holds if
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for the same constant ).
Boundary conditions hold if

¢(0) = o(L) = 0.



Boundary value problem:
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¢(0) = ¢(L) = 0.
There is an obvious solution: 0.
When is it not unique?

If for some value of A the boundary value problem
has a nonzero solution ¢, then this \ is called an
eigenvalue and ¢ is called an eigenfunction.

The eigenvalue problem is to find all eigenvalues
(and corresponding eigenfunctions).



Eigenvalue problem

¢" =—=Ap,  ¢(0) =¢(L) =0.

We are looking only for real eigenvalues.
Three cases: A >0, A =0, A <0.
Case 1: A > 0. ¢(x) = G cospux + Cysin px,

where A = 12, > 0.
»(0)=¢(L)=0 = (G =0, GsinuL=0.
A nonzero solution exists if uL = nm, n € Z.
So Ay = ()%, n=1,2,... are eigenvalues and

nmx

¢n(x) = sin = are corresponding eigenfunctions.



Separation of variables: summary
Eigenvalue problem: ¢ = —A\¢, ¢(0) = ¢(L) = 0.
Eigenvalues: A\, = (Z£)?, n=1,2,...

Eigenfunctions: ¢,(x) = sin 7=

Solution of the heat equation: u(x, t) = ¢(x)G(t).
46 — _\kG = G(t) = Gyexp(—\kt)

dt
Theorem For n=1,2,..., the function
u(x, t) = e Mk, (x) = exp(—”2L72r2 kt) sin 7%

is a solution of the following boundary value
problem for the heat equation:

ou 0%u
E = kw, U(O, t) = U(L, t) =0.



How do we solve the initial-boundary value problem?
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u(x,0) = f(x), u(0,t)=u(L,t)=0.

0< x<IL,

e Expand the function f into a series
nmx

f(X) = Z:OZI Bn sin T

e \Write the solution:
2 2

u(x, t) = Z:O_l B, exp(—nL—Zkt) sin niLX

(Fourier’s solution)



Fourier’s solution (insulated ends)
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u(x,0) = f(x), %(0, t) = %(L, t) = 0.

0<x<IL,

e Expand the function f into a series
X

f(x) = A0+Z An cosnL

e \Write the solution:
2 2

u(x, t) = Ag + 2:0:1 An exp(—n?kt) cos mrTx



Fourier’s solution (circular ring)
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R — < x<

5 k8X2, L<x<IL,
u(x,0) = £(1),
o) = u(Le), DLt = DAL ).

e Expand the function f into a series

f(x) = A0+Z(A cos =X L +B sinnLLX>
n=1

e Write the solution

= Ay + Zexp A cos 7= + By sin ’”ZX).




Fourier series
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To each mtegrable function f : [ L, L] — R we
associate a Fourier series such that
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Convergence theorem

Suppose f : [-L,L] — R is a piecewise smooth
function.

Let F : R — R be the 2L-periodic extension of f.

Theorem The Fourier series of the function f
converges everywhere. The sum at a point x is
equal to F(x) if F is continuous at x. Otherwise
the sum is equal to
F(x—=) + F(x+)
> :
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Function and its Fourier series



Fourier sine and cosine series

Suppose f(x) is an integrable function on [0, L].
The Fourier sine series of f

and the Fourier cosine series of f
0
Ao + g A, cos 1%
n=1

are defined as follows:

L
B, = %/0 f(x) sin 7 dx;
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Aoz%/ f(x) dx, An:%/ f(x)cos " dx, n>1.
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Convergence Theorem If a function

f :[0,L] — R is piecewise smooth then both
Fourier sine and Fourier cosine series of f converge
to f(x) at any point 0 < x < L of continuity.

Proposition (i) The Fourier series of a function
f :[-L, L] — R contains only sines if the function is
odd.

(ii) The Fourier series of a function
f : [-L, L] — R contains only a constant and
cosines if the function is even.
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Fourier sine series of f(x) = x
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Fourier cosine series of f(x) = x






Gibbs’ phenomenon

The partial sum p,(x) attains its maximal value v,
on the interval 0 < x < L at two points x,", x,
such that x© — L and x, — 0 as n — oo,

-_ L A4+ _g_ L
Actually, x,” = 5e0 Xy = L T

The maximal overshoot v, = p,(xF) satisfies
vi > Vo > vz > ... and lim v, = v> 100.
n—oo

200
Actually, vs, = / SINY 4y ~ 117.898

The Gibbs phenomenon occurs for any piecewise
smooth function at any discontinuity. The ultimate
overshoot rate of ~ 9% of the jump is universal.



Example

f(x) = e~.
Find the Fourier cosine series (0 < x < L).
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For n > 1,

Table of integrals:
e?*(acos bx + bsin bx)

* cos bx dx =
/e COS DX dx 32+b2



