
Math 412-501

Theory of Partial Differential Equations

Lecture 11: Review for Exam 1.



PDEs: two variables

heat equation:
∂u

∂t
= k

∂2u

∂x2

wave equation:
∂2u

∂t2
= c2 ∂2u

∂x2

Laplace’s equation:
∂2u

∂x2
+

∂2u

∂y 2
= 0

These equations are linear homogeneous.



PDEs: three variables

heat equation:
∂u

∂t
= k

(

∂2u

∂x2
+

∂2u

∂y 2

)

wave equation:
∂2u

∂t2
= c2

(

∂2u

∂x2
+

∂2u

∂y 2

)

Laplace’s equation:
∂2u

∂x2
+

∂2u

∂y 2
+

∂2u

∂z2
= 0



One-dimensional heat equation

Describes heat conduction in a rod:

cρ
∂u

∂t
=

∂

∂x

(

K0

∂u

∂x

)

+ Q

K0 = K0(x), c = c(x), ρ = ρ(x), Q = Q(x , t).

Assuming K0, c , ρ are constant (uniform rod) and
Q = 0 (no heat sources), we obtain

∂u

∂t
= k

∂2u

∂x2

where k = K0(cρ)−1.



One-dimensional wave equation

Describes vibrations of a perfectly elastic string:

ρ(x)
∂2u

∂t2
= T0

∂2u

∂x2
+ ρ(x)Q(x , t)

Assuming ρ = const and Q = 0, we obtain

∂2u

∂t2
= c2 ∂2u

∂x2

where c2 = T0/ρ.



Initial-boundary value problem

∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L, 0 ≤ t ≤ T .

Initial condition: u(x , 0) = f (x), where
f : [0, L] → R.

Boundary conditions: u(0, t) = u1(t),
∂u

∂x
(L, t) = φ2(t), where u1, φ2 : [0, T ] → R.

Initial-boundary value problem = PDE + initial
condition(s) + boundary conditions



D’Alembert’s solution of 1D wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
, −∞ < x < ∞, −∞ < t < ∞

Change of independent variables:
w = x + ct, z = x − ct.

Wave equation in new coordinates:
∂2u

∂w ∂z
= 0.

General solution: u(w , z) = B(z) + C (w),

where B , C : R → R are arbitrary functions.

General solution of the 1D wave equation:

u(x , t) = B(x − ct) + C (x + ct)



Initial value problem

∂2u

∂t2
= c2 ∂2u

∂x2
, −∞ < x , t < ∞,

u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x), −∞ < x < ∞.

General solution: u(x , t) = B(x − ct) + C (x + ct).

We substitute it into initial conditions:

B(x) + C (x) = f (x), −cB ′(x) + cC ′(x) = g(x).

Unknown functions B and C can be found from
these equations.



The initial value problem has a unique solution:

u(x , t) = 1

2

(

f (x − ct) + f (x + ct)

+ G (x + ct) − G (x − ct)
)

where G is an arbitrary anti-derivative of g/c .

Another representation of this solution:

u(x , t) =
f (x − ct) + f (x + ct)

2
+

1

2c

∫

x+ct

x−ct

g(ξ) dξ

(d’Alembert’s formula)



Semi-infinite string

Initial-boundary value problem

∂2u

∂t2
= c2 ∂2u

∂x2
, x ≥ 0;

u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x), x ≥ 0;

u(0, t) = 0 (fixed end).

General solution: u(x , t) = B(x − ct) + C (x + ct).

We substitute it into initial and boundary conditions:
B(x) + C (x) = f (x), −cB ′(x) + cC ′(x) = g(x),
x ≥ 0; B(−ct) + C (ct) = 0.

Unknown functions B and C can be found from
these equations.



Another approach

Initial-boundary value problem has a unique
solution and this solution can be extended to the
whole plane.

Hence the problem can be solved as follows:
• extend f and g to the whole line somehow ;
• solve the initial value problem in the whole plane;
• if the boundary condition holds, we are done!

Hints on how to satisfy the boundary condition:
• the boundary condition u(0, t) = 0 (fixed end)

holds if the (extended) functions f and g are odd;
• The boundary condition ∂u

∂x
(0, t) = 0 (free end)

holds if the (extended) functions f and g are even.



Separation of variables

The method applies to certain linear PDEs, for
example, heat equation, wave equation, Laplace’s
equation.

Basic idea: to find a solution of the PDE (function
of many variables) as the product of several
functions, each depending only on one variable.

For example, u(x , t) = B(x)C (t).



Heat equation

∂u

∂t
= k

∂2u

∂x2

Suppose u(x , t) = φ(x)G (t). Then

∂u

∂t
= φ(x)

dG

dt
,

∂2u

∂x2
=

d2φ

dx2
G (t).

Hence

φ(x)
dG

dt
= k

d2φ

dx2
G (t).

Divide both sides by k · φ(x) · G (t) = k · u(x , t):

1

kG
·
dG

dt
=

1

φ
·
d2φ

dx2
.



It follows that

1

kG
·
dG

dt
=

1

φ
·
d2φ

dx2
= −λ = const.

λ is called the separation constant. The variables
have been separated:

d2φ
dx2 = −λφ,

dG

dt
= −λkG .

Proposition Suppose φ and G are solutions of the
above ODEs for the same value of λ. Then
u(x , t) = φ(x)G (t) is a solution of the heat
equation.



Boundary value problem for the heat equation

∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L,

u(0, t) = u(L, t) = 0.

We are looking for solutions u(x , t) = φ(x)G (t).

PDE holds if
d2φ
dx2 = −λφ,

dG

dt
= −λkG

for the same constant λ.

Boundary conditions hold if
φ(0) = φ(L) = 0.



Boundary value problem:

d2φ

dx2
= −λφ, 0 ≤ x ≤ L,

φ(0) = φ(L) = 0.

There is an obvious solution: 0.
When is it not unique?

If for some value of λ the boundary value problem
has a nonzero solution φ, then this λ is called an
eigenvalue and φ is called an eigenfunction.

The eigenvalue problem is to find all eigenvalues
(and corresponding eigenfunctions).



Eigenvalue problem

φ′′ = −λφ, φ(0) = φ(L) = 0.

We are looking only for real eigenvalues.

Three cases: λ > 0, λ = 0, λ < 0.

Case 1: λ > 0. φ(x) = C1 cos µx + C2 sin µx ,
where λ = µ2, µ > 0.

φ(0) = φ(L) = 0 =⇒ C1 = 0, C2 sin µL = 0.

A nonzero solution exists if µL = nπ, n ∈ Z.

So λn = (nπ
L

)2, n = 1, 2, . . . are eigenvalues and

φn(x) = sin nπx

L
are corresponding eigenfunctions.



Separation of variables: summary

Eigenvalue problem: φ′′ = −λφ, φ(0) = φ(L) = 0.

Eigenvalues: λn = (nπ
L

)2, n = 1, 2, . . .

Eigenfunctions: φn(x) = sin nπx

L
.

Solution of the heat equation: u(x , t) = φ(x)G (t).
dG

dt
= −λkG =⇒ G (t) = C0 exp(−λkt)

Theorem For n = 1, 2, . . . , the function

u(x , t) = e−λnktφn(x) = exp(−n2π2

L2 kt) sin nπx

L

is a solution of the following boundary value
problem for the heat equation:

∂u

∂t
= k

∂2u

∂x2
, u(0, t) = u(L, t) = 0.



How do we solve the initial-boundary value problem?

∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L,

u(x , 0) = f (x), u(0, t) = u(L, t) = 0.

• Expand the function f into a series

f (x) =
∑∞

n=1
Bn sin

nπx

L
.

• Write the solution:

u(x , t) =
∑∞

n=1
Bn exp

(

−
n2π2

L2
kt

)

sin
nπx

L
.

(Fourier’s solution)



Fourier’s solution (insulated ends)

∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L,

u(x , 0) = f (x),
∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0.

• Expand the function f into a series

f (x) = A0 +
∑∞

n=1
An cos

nπx

L
.

• Write the solution:

u(x , t) = A0 +
∑∞

n=1
An exp

(

−
n2π2

L2
kt

)

cos
nπx

L
.



Fourier’s solution (circular ring)

∂u

∂t
= k

∂2u

∂x2
, −L ≤ x ≤ L,

u(x , 0) = f (t),

u(−L, t) = u(L, t),
∂u

∂x
(−L, t) =

∂u

∂x
(L, t).

• Expand the function f into a series

f (x) = A0 +
∞

∑

n=1

(

An cos
nπx

L
+ Bn sin

nπx

L

)

.

• Write the solution:

u(x , t) = A0 +
∞

∑

n=1

exp
(

−n2π2

L2 kt
)(

An cos nπx

L
+ Bn sin nπx

L

)

.



Fourier series

a0 +
∞

∑

n=1

an cos
nπx

L
+

∞
∑

n=1

bn sin
nπx

L

To each integrable function f : [−L, L] → R we
associate a Fourier series such that

a0 =
1

2L

∫

L

−L

f (x) dx

and for n ≥ 1,

an =
1

L

∫

L

−L

f (x) cos
nπx

L
dx ,

bn =
1

L

∫

L

−L

f (x) sin
nπx

L
dx .



Convergence theorem

Suppose f : [−L, L] → R is a piecewise smooth

function.

Let F : R → R be the 2L-periodic extension of f .

Theorem The Fourier series of the function f

converges everywhere. The sum at a point x is
equal to F (x) if F is continuous at x . Otherwise
the sum is equal to

F (x−) + F (x+)

2
.



Function and its Fourier series



Fourier sine and cosine series

Suppose f (x) is an integrable function on [0, L].
The Fourier sine series of f

∑∞

n=1
Bn sin nπx

L

and the Fourier cosine series of f

A0 +
∑∞

n=1
An cos nπx

L

are defined as follows:

Bn = 2

L

∫

L

0

f (x) sin nπx

L
dx ;

A0 = 1

L

∫

L

0

f (x) dx , An = 2

L

∫

L

0

f (x) cos nπx

L
dx , n ≥ 1.



Convergence Theorem If a function
f : [0, L] → R is piecewise smooth then both
Fourier sine and Fourier cosine series of f converge
to f (x) at any point 0 < x < L of continuity.

Proposition (i) The Fourier series of a function
f : [−L, L] → R contains only sines if the function is
odd.

(ii) The Fourier series of a function
f : [−L, L] → R contains only a constant and
cosines if the function is even.



Fourier sine series of f (x) = x



Fourier cosine series of f (x) = x



pn(x), 1 ≤ n ≤ 6.



Gibbs’ phenomenon

The partial sum pn(x) attains its maximal value vn

on the interval 0 ≤ x ≤ L at two points x+
n , x−

n

such that x+
n → L and x−

n → 0 as n → ∞.

Actually, x−
n = L

2n
, x+

n = L − L

2n
.

The maximal overshoot vn = pn(x
±
n ) satisfies

v1 > v2 > v3 > . . . and lim
n→∞

vn = v∞> 100.

Actually, v∞ =
200

π

∫ π

0

sin y

y
dy ≈ 117.898

The Gibbs phenomenon occurs for any piecewise
smooth function at any discontinuity. The ultimate
overshoot rate of ≈ 9% of the jump is universal.



Example

f (x) = ex .
Find the Fourier cosine series (0 ≤ x ≤ L).

A0 =
1

L

∫

L

0

ex dx .

For n ≥ 1,

An =
2

L

∫

L

0

ex cos
nπx

L
dx .

Table of integrals:
∫

eax cos bx dx =
eax(a cos bx + b sin bx)

a2 + b2
.


