Math 412-501
Theory of Partial Differential Equations
Lecture 2: Diffusion equation. Wave equation. Boundary conditions.
heat equation:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

heat equation:

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Laplace's equation:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

Heat conduction in a rod

$u(x, t)=$ temperature

Heat equation:

$$
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q
$$

$K_{0}=K_{0}(x), c=c(x), \rho=\rho(x), Q=Q(x, t)$.
Assuming K_{0}, c, ρ are constant (uniform rod) and $Q=0$ (no heat sources), we obtain

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

where $k=K_{0}(c \rho)^{-1}$ is called the thermal diffusivity.

Heat equation is derived from two physical laws:

- conservation of heat energy,
- Fourier's low of heat conduction.

The heat equation is also called the diffusion equation.

Pollutant diffusion in a tube

$u(x, t)=$ concentration of the chemical

- conservation of mass
- Fick's law of diffusion

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

$k=$ chemical diffusivity

Vibration of a stretched string

$u(x, t)=$ vertical displacement
Newton's law: mass \times acceleration $=$ force
$\rho(x)=$ mass density
$T(x, t)=$ magnitude of tensile force
$Q(x, t)=$ (vertical) external forces on a unit mass

perfectly flexible string: no resistance to bending $\theta(x, t)=$ angle between the horizon and the string

vertical component of tensile force $=$
$T(x+\Delta x, t) \cdot \sin \theta(x+\Delta x, t)-T(x, t) \cdot \sin \theta(x, t)$

$$
\begin{gathered}
\rho(x) \cdot \Delta x \cdot \frac{\partial^{2} u}{\partial t^{2}}=T(x+\Delta x, t) \cdot \sin \theta(x+\Delta x, t) \\
\quad-T(x, t) \cdot \sin \theta(x, t)+\rho(x) \cdot \Delta x \cdot Q(x, t) \\
\rho(x) \cdot \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}(T(x, t) \cdot \sin \theta(x, t))+\rho(x) \cdot Q(x, t)
\end{gathered}
$$

We assume that $\theta \ll 1$, hence $\sin \theta \approx \tan \theta$.

$$
\rho(x) \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(T \frac{\partial u}{\partial x}\right)+\rho(x) Q(x, t)
$$

perfectly elastic string: tension is proportional to stretching (Hooke's law)
Since $\theta \ll 1$, we assume $T(x, t) \approx T_{0}=$ const.

$$
\rho(x) \frac{\partial^{2} u}{\partial t^{2}}=T_{0} \frac{\partial^{2} u}{\partial x^{2}}+\rho(x) Q(x, t)
$$

Assuming $\rho=$ const and $Q=0$, we obtain

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

where $c^{2}=T_{0} / \rho$.
This is one-dimensional wave equation.

Initial and boundary conditions for ODEs

$y^{\prime}(t)=y(t), 0 \leq t \leq L$.
General solution: $y(t)=C_{1} e^{t}$, where $C_{1}=$ const.
To determine a unique solution, we need one initial condition.

For example, $y(0)=1$. Then $y(t)=e^{t}$ is the unique solution.
$y^{\prime \prime}(t)=-y(t), 0 \leq t \leq L$.
General solution: $y(t)=C_{1} \cos t+C_{2} \sin t$, where C_{1}, C_{2} are constant.

To determine a unique solution, we need two initial conditions. For example, $y(0)=1, y^{\prime}(0)=0$. Then $y(t)=\cos t$ is the unique solution.

Alternatively, we may impose boundary conditions.
For example, $y(0)=0, y(L)=1$. In the case $L=\pi / 2, y(t)=\sin t$ is the unique solution.

Initial value problem $=\mathrm{ODE}+$ initial conditions Boundary value problem $=$ ODE + boundary conditions

Initial value problem $y^{\prime \prime}=-y, y(0)=a, y^{\prime}(0)=b$ always has a unique solution.

Boundary value problem $y^{\prime \prime}=-y, y(0)=a$, $y(L)=b$ may not have a unique solution for some triples (a, b, L).

For example, let $L=\pi$ and $a=0$. Then the boundary value problem has no solution if $b \neq 0$. In the case $b=0$, it has infinitely many solutions $y(t)=C_{1} \sin t, C_{1}=$ const.

Heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L, 0 \leq t \leq T
$$

Initial condition: $u(x, 0)=f(x)$, where $f:[0, L] \rightarrow \mathbb{R}$.

Boundary conditions: $u(0, t)=u_{1}(t)$, $u(L, t)=u_{2}(t)$, where $u_{1}, u_{2}:[0, T] \rightarrow \mathbb{R}$.
Boundary conditions of the first kind: prescribed temperature.

Another boundary conditions: $\frac{\partial u}{\partial x}(0, t)=\phi_{1}(t)$, $\frac{\partial u}{\partial x}(L, t)=\phi_{2}(t)$, where $\phi_{1}, \phi_{2}:[0, T] \rightarrow \mathbb{R}$.
Boundary conditions of the second kind: prescribed heat flux.
A particular case: $\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)=0$
(insulated boundary).

Robin conditions:

$-\frac{\partial u}{\partial x}(0, t)=-h \cdot\left(u(0, t)-u_{1}(t)\right)$,
$-\frac{\partial u}{\partial x}(L, t)=h \cdot\left(u(L, t)-u_{2}(t)\right)$,
where $h=$ const >0 and $u_{1}, u_{2}:[0, T] \rightarrow \mathbb{R}$.
Boundary conditions of the third kind: Newton's law of cooling.

Also, we may consider mixed boundary conditions, for example, $u(0, t)=u_{1}(t), \frac{\partial u}{\partial x}(L, t)=\phi_{2}(t)$.

Wave equation

$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L, 0 \leq t \leq T$.
Two initial conditions: $u(x, 0)=f(x)$,
$\frac{\partial u}{\partial t}(x, 0)=g(x)$, where $f, g:[0, L] \rightarrow \mathbb{R}$.
Some boundary conditions: $u(0, t)=u(L, t)=0$.
Dirichlet conditions: fixed ends.
Another boundary conditions:
$\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)=0$.
Neumann conditions: free ends.

