Math 412-501 Theory of Partial Differential Equations Lecture 2: Diffusion equation. Wave equation. Boundary conditions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

wave equation:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

Laplace's equation:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

heat equation:

$$\frac{\partial u}{\partial t} = k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$
$$\frac{\partial^2 u}{\partial x^2} = k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

wave equation:

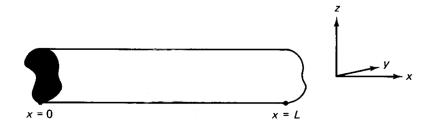
$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

Laplace's equation:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Heat conduction in a rod



u(x, t) = temperature

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

$$c\rho\frac{\partial u}{\partial t} = \frac{\partial}{\partial x}\left(K_0\frac{\partial u}{\partial x}\right) + Q$$

$$\mathcal{K}_0=\mathcal{K}_0(x),\ c=c(x),\
ho=
ho(x),\ Q=Q(x,t).$$

Assuming K_0, c, ρ are constant (uniform rod) and Q = 0 (no heat sources), we obtain

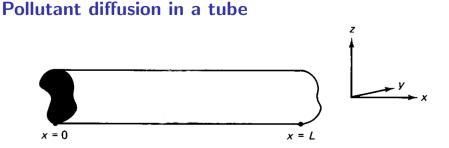
$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2},$$

where $k = K_0(c\rho)^{-1}$ is called the *thermal diffusivity*.

Heat equation is derived from two physical laws:

- conservation of heat energy,
- Fourier's low of heat conduction.

The heat equation is also called the **diffusion** equation.



u(x, t) =concentration of the chemical

- conservation of mass
- Fick's law of diffusion

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

k = chemical diffusivity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Vibration of a stretched string

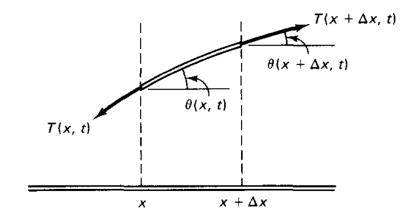


u(x, t) =vertical displacement

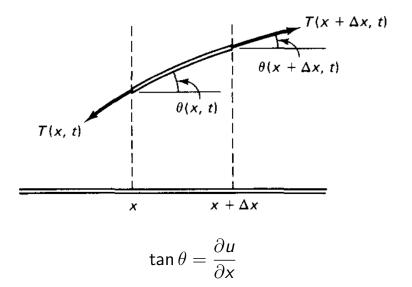
Newton's law: mass × acceleration = force

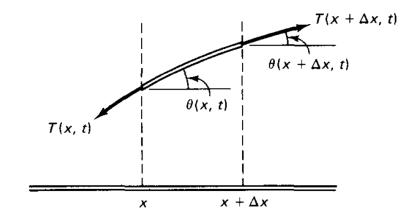
 $\rho(x) = mass density$

T(x, t) = magnitude of tensile force Q(x, t) = (vertical) external forces on a unit mass



perfectly flexible string: no resistance to bending $\theta(x, t)$ = angle between the horizon and the string





vertical component of tensile force = $T(x + \Delta x, t) \cdot \sin \theta(x + \Delta x, t) - T(x, t) \cdot \sin \theta(x, t)$

$$\rho(x) \cdot \Delta x \cdot \frac{\partial^2 u}{\partial t^2} = T(x + \Delta x, t) \cdot \sin \theta(x + \Delta x, t)$$
$$-T(x, t) \cdot \sin \theta(x, t) + \rho(x) \cdot \Delta x \cdot Q(x, t)$$
$$\rho(x) \cdot \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \Big(T(x, t) \cdot \sin \theta(x, t) \Big) + \rho(x) \cdot Q(x, t)$$

We assume that $\theta \ll 1$, hence $\sin \theta \approx \tan \theta$.

$$\rho(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left(T\frac{\partial u}{\partial x}\right) + \rho(x)Q(x,t)$$

perfectly elastic string: tension is proportional to stretching (Hooke's law)

Since $\theta \ll 1$, we assume $T(x, t) \approx T_0 = \text{const.}$

$$\rho(x)\frac{\partial^2 u}{\partial t^2} = T_0\frac{\partial^2 u}{\partial x^2} + \rho(x)Q(x,t)$$

Assuming $\rho = \text{const}$ and Q = 0, we obtain

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

where $c^2 = T_0/\rho$. This is **one-dimensional wave equation**.

Initial and boundary conditions for ODEs

 $y'(t) = y(t), \ 0 \le t \le L.$

General solution: $y(t) = C_1 e^t$, where $C_1 = \text{const.}$

To determine a unique solution, we need one **initial condition**.

For example, y(0) = 1. Then $y(t) = e^t$ is the unique solution.

 $y''(t) = -y(t), \ 0 \le t \le L.$ General solution: $y(t) = C_1 \cos t + C_2 \sin t$, where C_1, C_2 are constant.

To determine a unique solution, we need **two** initial conditions. For example, y(0) = 1, y'(0) = 0. Then $y(t) = \cos t$ is the unique solution.

Alternatively, we may impose boundary conditions. For example, y(0) = 0, y(L) = 1. In the case $L = \pi/2$, $y(t) = \sin t$ is the unique solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Initial value problem = ODE + initial conditions **Boundary value problem** = ODE + boundary conditions

Initial value problem y'' = -y, y(0) = a, y'(0) = b always has a unique solution.

Boundary value problem y'' = -y, y(0) = a, y(L) = b may not have a unique solution for some triples (a, b, L).

For example, let $L = \pi$ and a = 0. Then the boundary value problem has no solution if $b \neq 0$. In the case b = 0, it has infinitely many solutions $y(t) = C_1 \sin t$, $C_1 = \text{const.}$

Heat equation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \quad 0 \le x \le L, \ 0 \le t \le T.$$

Initial condition: u(x,0) = f(x), where $f : [0, L] \rightarrow \mathbb{R}$.

Boundary conditions: $u(0, t) = u_1(t)$, $u(L, t) = u_2(t)$, where $u_1, u_2 : [0, T] \rightarrow \mathbb{R}$.

Boundary conditions of the **first kind**: prescribed temperature.

(日)

Another boundary conditions:
$$\frac{\partial u}{\partial x}(0,t) = \phi_1(t)$$
,
 $\frac{\partial u}{\partial x}(L,t) = \phi_2(t)$, where $\phi_1, \phi_2 : [0, T] \to \mathbb{R}$.

Boundary conditions of the **second kind**: prescribed heat flux.

A particular case:
$$rac{\partial u}{\partial x}(0,t) = rac{\partial u}{\partial x}(L,t) = 0$$
 (insulated boundary).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Robin conditions:

$$\begin{aligned} &-\frac{\partial u}{\partial x}(0,t) = -h \cdot \left(u(0,t) - u_1(t)\right), \\ &-\frac{\partial u}{\partial x}(L,t) = h \cdot \left(u(L,t) - u_2(t)\right), \\ &\text{where } h = \text{const} > 0 \text{ and } u_1, u_2 : [0,T] \to \mathbb{R}. \end{aligned}$$

Boundary conditions of the **third kind**: Newton's law of cooling.

Also, we may consider **mixed** boundary conditions, for example, $u(0, t) = u_1(t)$, $\frac{\partial u}{\partial x}(L, t) = \phi_2(t)$.

Wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 \le x \le L, \ 0 \le t \le T.$$

Two initial conditions: u(x,0) = f(x), $\frac{\partial u}{\partial t}(x,0) = g(x)$, where $f,g:[0,L] \to \mathbb{R}$.

Some boundary conditions: u(0, t) = u(L, t) = 0. **Dirichlet conditions:** fixed ends.

Another boundary conditions: $\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(L,t) = 0.$

Neumann conditions: free ends.