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Theory of Partial Differential Equations

Lecture 2: Diffusion equation.

Wave equation. Boundary conditions.
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Heat conduction in a rod

u(x , t) = temperature



Heat equation: cρ
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K0 = K0(x), c = c(x), ρ = ρ(x), Q = Q(x , t).

Assuming K0, c , ρ are constant (uniform rod) and
Q = 0 (no heat sources), we obtain
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,

where k = K0(cρ)−1 is called the thermal diffusivity.



Heat equation is derived from two physical laws:
• conservation of heat energy,
• Fourier’s low of heat conduction.

The heat equation is also called the diffusion

equation.



Pollutant diffusion in a tube

u(x , t) = concentration of the chemical

• conservation of mass
• Fick’s law of diffusion
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k = chemical diffusivity



Vibration of a stretched string

u(x , t) = vertical displacement

Newton’s law: mass × acceleration = force

ρ(x) = mass density

T (x , t) = magnitude of tensile force
Q(x , t) = (vertical) external forces on a unit mass



perfectly flexible string: no resistance to bending

θ(x , t) = angle between the horizon and the string



tan θ =
∂u

∂x



vertical component of tensile force =

T (x + ∆x , t) · sin θ(x + ∆x , t)−T (x , t) · sin θ(x , t)



ρ(x) · ∆x ·
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−T (x , t) · sin θ(x , t) + ρ(x) · ∆x · Q(x , t)
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We assume that θ << 1, hence sin θ ≈ tan θ.
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perfectly elastic string: tension is proportional to
stretching (Hooke’s law)

Since θ << 1, we assume T (x , t) ≈ T0 = const.
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Assuming ρ = const and Q = 0, we obtain
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where c2 = T0/ρ.
This is one-dimensional wave equation.



Initial and boundary conditions for ODEs

y ′(t) = y(t), 0 ≤ t ≤ L.

General solution: y(t) = C1e
t , where C1 = const.

To determine a unique solution, we need one initial

condition.

For example, y(0) = 1. Then y(t) = et is the
unique solution.



y ′′(t) = −y(t), 0 ≤ t ≤ L.

General solution: y(t) = C1 cos t + C2 sin t, where
C1, C2 are constant.

To determine a unique solution, we need two initial
conditions. For example, y(0) = 1, y ′(0) = 0. Then
y(t) = cos t is the unique solution.

Alternatively, we may impose boundary conditions.
For example, y(0) = 0, y(L) = 1. In the case
L = π/2, y(t) = sin t is the unique solution.



Initial value problem = ODE + initial conditions
Boundary value problem = ODE + boundary
conditions

Initial value problem y ′′ = −y , y(0) = a, y ′(0) = b

always has a unique solution.

Boundary value problem y ′′ = −y , y(0) = a,
y(L) = b may not have a unique solution for some
triples (a, b, L).

For example, let L = π and a = 0. Then the
boundary value problem has no solution if b 6= 0.
In the case b = 0, it has infinitely many solutions
y(t) = C1 sin t, C1 = const.



Heat equation

∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L, 0 ≤ t ≤ T .

Initial condition: u(x , 0) = f (x), where
f : [0, L] → R.

Boundary conditions: u(0, t) = u1(t),
u(L, t) = u2(t), where u1, u2 : [0, T ] → R.

Boundary conditions of the first kind: prescribed
temperature.



Another boundary conditions:
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(L, t) = φ2(t), where φ1, φ2 : [0, T ] → R.

Boundary conditions of the second kind:
prescribed heat flux.

A particular case:
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(insulated boundary).



Robin conditions:

−
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−
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where h = const > 0 and u1, u2 : [0, T ] → R.

Boundary conditions of the third kind: Newton’s
law of cooling.

Also, we may consider mixed boundary conditions,

for example, u(0, t) = u1(t),
∂u

∂x
(L, t) = φ2(t).



Wave equation

∂2u
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, 0 ≤ x ≤ L, 0 ≤ t ≤ T .

Two initial conditions: u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x), where f , g : [0, L] → R.

Some boundary conditions: u(0, t) = u(L, t) = 0.

Dirichlet conditions: fixed ends.

Another boundary conditions:
∂u

∂x
(0, t) =
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∂x
(L, t) = 0.

Neumann conditions: free ends.


