Math 412-501
Theory of Partial Differential Equations
Lecture 3:
Steady-state solutions of the heat equation. D'Alembert's solution of the wave equation.

One-dimensional heat equation

$$
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q
$$

$K_{0}=K_{0}(x), c=c(x), \rho=\rho(x), Q=Q(x, t)$.
Assuming K_{0}, c, ρ are constant (uniform rod) and $Q=0$ (no heat sources), we obtain

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

where $k=K_{0}(c \rho)^{-1}$.

Initial-boundary value problem

$\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L, \quad 0 \leq t \leq T$.
Initial condition: $u(x, 0)=f(x)$, where
$f:[0, L] \rightarrow \mathbb{R}$.
Boundary conditions: $u(0, t)=u_{1}(t)$,
$\frac{\partial u}{\partial x}(L, t)=\phi_{2}(t)$, where $u_{1}, \phi_{2}:[0, T] \rightarrow \mathbb{R}$.
Initial-boundary value problem $=\mathrm{PDE}+$ initial condition(s) + boundary conditions

Steady-state solutions

$$
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q, \quad 0 \leq x \leq L, \quad 0 \leq t<\infty
$$

A solution u of the heat equation is called an equilibrium (or steady-state) solution if it does not depend on time, that is, $u\left(x, t_{1}\right)=u\left(x, t_{2}\right)$ for any $0 \leq x \leq L$ and $0 \leq t_{1}<t_{2}$. Hence $u(x, t)=v(x)$, where $v:[0, L] \rightarrow \mathbb{R}$.
In particular, $\frac{\partial u}{\partial t}=0$. Also, $\frac{\partial u}{\partial x}(x, t)=\frac{d v}{d x}(x)$.
$c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q, \quad 0 \leq x \leq L, \quad 0 \leq t<\infty$
If a steady-state solution exists, then Q does not depend on time.
Suppose $u(x, t)=v(x)$ is a steady-state solution, then

$$
\frac{d}{d x}\left(K_{0} \frac{d v}{d x}\right)+Q=0, \quad 0 \leq x \leq L
$$

If a steady-state solution satisfies a boundary condition of the first or second kind, then the boundary condition is time-independent.
$u(0, t)=u_{1}(t) \Longrightarrow u_{1}=$ const
$\frac{\partial u}{\partial x}(0, t)=\phi_{1}(t) \Longrightarrow \phi_{1}=\mathrm{const}$
This is not always so for boundary conditions of the third kind. For example, if $u(0, t)=u_{0}=$ const and $\frac{\partial u}{\partial x}(0, t)=0$, then the boundary condition

$$
\frac{\partial u}{\partial x}(0, t)=h(t)\left(u(0, t)-u_{0}\right)
$$

is satisfied for an arbitrary function h.
$c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q, \quad 0 \leq x \leq L, \quad 0 \leq t<\infty$
Conjecture Assume that boundary conditions are time-independent and there exists a steady-state solution satisfying them. Then an arbitrary solution $u(x, t)$ of the initial-boundary value problem (uniformly) approaches a steady-state solution as $t \rightarrow \infty$.

$$
\begin{aligned}
\lim _{t \rightarrow \infty} u(x, t) & =u_{\infty}(x) \\
\frac{d}{d x}\left(K_{0} \frac{d u_{\infty}}{d x}\right)+Q & =0, \quad 0 \leq x \leq L
\end{aligned}
$$

$$
\begin{gathered}
\frac{d}{d x}\left(K_{0} \frac{d u}{d x}\right)+Q=0, \quad 0 \leq x \leq L \\
\left(K_{0} u^{\prime}\right)^{\prime}+Q=0 \\
\int_{0}^{x}\left(K_{0} u^{\prime}\right)^{\prime}(\xi) d \xi=-\int_{0}^{x} Q(\xi) d \xi \\
K_{0}(x) u^{\prime}(x)-K_{0}(0) u^{\prime}(0)=-\int_{0}^{x} Q(\xi) d \xi \\
u^{\prime}(x)=\frac{1}{K_{0}(x)}\left(K_{0}(0) u^{\prime}(0)-\int_{0}^{x} Q(\xi) d \xi\right) \\
u(x)=u(0)+\int_{0}^{x}\left(\frac{K_{0}(0) u^{\prime}(0)}{K_{0}(\eta)}-\frac{1}{K_{0}(\eta)} \int_{0}^{\eta} Q(\xi) d \xi\right) d \eta
\end{gathered}
$$

Initial value problem

$$
\left(K_{0} u^{\prime}\right)^{\prime}+Q=0, \quad u(0)=C_{0}, u^{\prime}(0)=C_{1}
$$

has a unique solution
$u(x)=C_{0}+\int_{0}^{x}\left(\frac{K_{0}(0) C_{1}}{K_{0}(\eta)}-\frac{1}{K_{0}(\eta)} \int_{0}^{\eta} Q(\xi) d \xi\right) d \eta$
Assuming $K_{0}=$ const, we have

$$
u(x)=C_{0}+C_{1} x-\int_{0}^{x}\left(\frac{1}{K_{0}} \int_{0}^{\eta} Q(\xi) d \xi\right) d \eta
$$

Assuming $K_{0}=$ const and $Q=0$, we have

$$
u(x)=C_{0}+C_{1} x
$$

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L, \quad 0 \leq t<\infty
$$

General steady-state solution: $u(x, t)=C_{0}+C_{1} x$, where C_{0}, C_{1} are constant.

Boundary conditions: $u(0, t)=u_{1}, u(L, t)=u_{2}$.
$C_{0}=u_{1}, C_{0}+C_{1} L=u_{2} \Longrightarrow u(x, t)=u_{1}+\frac{u_{2}-u_{1}}{L} x$ (unique equilibrium)

Boundary conditions: $\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)=0$.
$C_{1}=0 \Longrightarrow u(x, t)=C_{0}$
(non-unique equilibrium)

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L, \quad 0 \leq t<\infty
$$

General steady-state solution: $u(x, t)=C_{0}+C_{1} x$, where C_{0}, C_{1} are constant.

Boundary conditions: $\frac{\partial u}{\partial x}(0, t)=0, \frac{\partial u}{\partial x}(L, t)=1$. $C_{1}=0, C_{1}=1 \Longrightarrow$ no equilibrium

Homework

$c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q, \quad 0 \leq x \leq L, \quad 0 \leq t<\infty$
Boundary conditions: $\frac{\partial u}{\partial x}(0, t)=u(0, t)-u_{0}$, $\frac{\partial u}{\partial x}(L, t)=\alpha$.
Suppose $K_{0}=$ const and $Q(x, t) / K_{0}=x$, $0 \leq x \leq L, t \geq 0$.

Problem. Find the steady-state solution of the boundary problem.

Solution

Let u be a steady-state solution of the heat equation. Then $u(x, t)=v(x)$, where $v:[0, L] \rightarrow \mathbb{R}$ satisfies the following ODE:

$$
\left(K_{0} v^{\prime}\right)^{\prime}+Q=0
$$

Since $K_{0}=$ const >0, it follows that $v^{\prime \prime}+Q / K_{0}=0$.
Hence $v^{\prime \prime}(x)+x=0$ for $0 \leq x \leq L$.
$v^{\prime \prime}(x)=-x \Longrightarrow v^{\prime}(x)=-\frac{x^{2}}{2}+C_{1} \Longrightarrow$
$v(x)=-\frac{x^{3}}{6}+C_{1} x+C_{2}$,
where C_{1}, C_{2} are constants.
$v^{\prime}(x)=-x^{2} / 2+C_{1}$,
$v(x)=-x^{3} / 6+C_{1} x+C_{2}, \quad 0 \leq x \leq L$.
Boundary conditions are satisfied if
$v^{\prime}(0)=v(0)-u_{0}$ and $v^{\prime}(L)=\alpha$.
That is, if $C_{1}=C_{2}-u_{0},-L^{2} / 2+C_{1}=\alpha$.
It follows that $C_{1}=\alpha+L^{2} / 2, C_{2}=\alpha+L^{2} / 2+u_{0}$.

unique solution:

$$
\begin{aligned}
u(x, t) & =-x^{3} / 6+\left(\alpha+L^{2} / 2\right) x+\alpha+L^{2} / 2+u_{0} \\
& =-x^{3} / 6+\left(\alpha+L^{2} / 2\right)(x+1)+u_{0} .
\end{aligned}
$$

New equation

$$
\frac{\partial^{2} u}{\partial w \partial z}=0, \quad u=u(w, z)
$$

Domain: $a_{1} \leq w \leq a_{2}, b_{1} \leq z \leq b_{2}$.
(we allow intervals $\left[a_{1}, a_{2}\right.$] and [b_{1}, b_{2}] to be infinite or semi-infinite)

$$
\begin{aligned}
\frac{\partial}{\partial w}\left(\frac{\partial u}{\partial z}\right) & =0, \quad \frac{\partial u}{\partial z}(w, z)=\gamma(z) \\
u(w, z) & =\int_{z_{0}}^{z} \gamma(\xi) d \xi+C(w)
\end{aligned}
$$

$$
u(w, z)=B(z)+C(w) \quad \text { (general solution) }
$$

Wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Change of independent variables:

$$
w=x+c t, \quad z=x-c t
$$

How does the equation look in new coordinates?

$$
\begin{gathered}
\frac{\partial}{\partial t}=\frac{\partial w}{\partial t} \frac{\partial}{\partial w}+\frac{\partial z}{\partial t} \frac{\partial}{\partial z}=c \frac{\partial}{\partial w}-c \frac{\partial}{\partial z} \\
\frac{\partial}{\partial x}=\frac{\partial w}{\partial x} \frac{\partial}{\partial w}+\frac{\partial z}{\partial x} \frac{\partial}{\partial z}=\frac{\partial}{\partial w}+\frac{\partial}{\partial z}
\end{gathered}
$$

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =c^{2}\left(\frac{\partial}{\partial w}-\frac{\partial}{\partial z}\right)\left(\frac{\partial}{\partial w}-\frac{\partial}{\partial z}\right) u \\
& =c^{2}\left(\frac{\partial^{2} u}{\partial w^{2}}-2 \frac{\partial^{2} u}{\partial w \partial z}+\frac{\partial^{2} u}{\partial z^{2}}\right) \\
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial^{2} u}{\partial w^{2}}+2 \frac{\partial^{2} u}{\partial w \partial z}+\frac{\partial^{2} u}{\partial z^{2}} \\
\frac{\partial^{2} u}{\partial t^{2}} & -c^{2} \frac{\partial^{2} u}{\partial x^{2}}=-4 c^{2} \frac{\partial^{2} u}{\partial w \partial z}
\end{aligned}
$$

Wave equation in new coordinates: $\frac{\partial^{2} u}{\partial w \partial z}=0$.
General solution: $u(x, t)=B(x-c t)+C(x+c t)$
(d'Alembert, 1747)

