
Math 412-501

Theory of Partial Differential Equations

Lecture 3:
Steady-state solutions of the heat equation.

D’Alembert’s solution of the wave equation.



One-dimensional heat equation

cρ
∂u

∂t
=

∂

∂x

(

K0

∂u

∂x

)

+ Q

K0 = K0(x), c = c(x), ρ = ρ(x), Q = Q(x , t).

Assuming K0, c , ρ are constant (uniform rod) and
Q = 0 (no heat sources), we obtain

∂u

∂t
= k

∂2u

∂x2

where k = K0(cρ)−1.



Initial-boundary value problem

∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L, 0 ≤ t ≤ T .

Initial condition: u(x , 0) = f (x), where
f : [0, L] → R.

Boundary conditions: u(0, t) = u1(t),
∂u

∂x
(L, t) = φ2(t), where u1, φ2 : [0, T ] → R.

Initial-boundary value problem = PDE + initial
condition(s) + boundary conditions



Steady-state solutions

cρ
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∂t
=

∂

∂x
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∂u
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)

+ Q, 0 ≤ x ≤ L, 0 ≤ t < ∞

A solution u of the heat equation is called an
equilibrium (or steady-state) solution if it does
not depend on time, that is, u(x , t1) = u(x , t2) for
any 0 ≤ x ≤ L and 0 ≤ t1 < t2.

Hence u(x , t) = v(x), where v : [0, L] → R.

In particular,
∂u

∂t
= 0. Also,

∂u

∂x
(x , t) =

dv

dx
(x).



cρ
∂u

∂t
=

∂

∂x

(

K0

∂u

∂x

)

+ Q, 0 ≤ x ≤ L, 0 ≤ t < ∞

If a steady-state solution exists, then Q does not
depend on time.

Suppose u(x , t) = v(x) is a steady-state solution,
then

d

dx

(

K0

dv

dx

)

+ Q = 0, 0 ≤ x ≤ L



If a steady-state solution satisfies a boundary
condition of the first or second kind, then the
boundary condition is time-independent.

u(0, t) = u1(t) =⇒ u1 = const
∂u

∂x
(0, t) = φ1(t) =⇒ φ1 = const

This is not always so for boundary conditions of the
third kind. For example, if u(0, t) = u0 = const and
∂u

∂x
(0, t) = 0, then the boundary condition

∂u

∂x
(0, t) = h(t)

(

u(0, t) − u0

)

is satisfied for an arbitrary function h.
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)

+ Q, 0 ≤ x ≤ L, 0 ≤ t < ∞

Conjecture Assume that boundary conditions are
time-independent and there exists a steady-state
solution satisfying them. Then an arbitrary solution
u(x , t) of the initial-boundary value problem
(uniformly) approaches a steady-state solution as
t → ∞.

lim
t→∞

u(x , t) = u∞(x)

d

dx

(

K0

du∞
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)

+ Q = 0, 0 ≤ x ≤ L



d

dx

(

K0

du

dx

)

+ Q = 0, 0 ≤ x ≤ L

(K0u
′)′ + Q = 0

∫

x

0

(K0u
′)′(ξ) dξ = −

∫

x

0

Q(ξ) dξ

K0(x)u′(x) − K0(0)u′(0) = −

∫

x

0

Q(ξ) dξ

u′(x) =
1

K0(x)

(

K0(0)u′(0) −

∫

x

0

Q(ξ) dξ

)

u(x) = u(0) +

∫

x

0

(

K0(0)u′(0)

K0(η)
−

1

K0(η)

∫ η

0

Q(ξ) dξ

)

dη



Initial value problem

(K0u
′)′ + Q = 0, u(0) = C0, u′(0) = C1

has a unique solution

u(x) = C0 +

∫

x

0

(

K0(0)C1

K0(η)
−

1

K0(η)

∫ η

0

Q(ξ) dξ

)

dη

Assuming K0 = const, we have

u(x) = C0 + C1x −

∫

x

0

(

1

K0

∫ η

0

Q(ξ) dξ

)

dη

Assuming K0 = const and Q = 0, we have

u(x) = C0 + C1x



∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L, 0 ≤ t < ∞

General steady-state solution: u(x , t) = C0 + C1x ,
where C0, C1 are constant.

Boundary conditions: u(0, t) = u1, u(L, t) = u2.

C0 = u1, C0 + C1L = u2 =⇒ u(x , t) = u1 + u2−u1

L
x

(unique equilibrium)

Boundary conditions: ∂u

∂x
(0, t) = ∂u

∂x
(L, t) = 0.

C1 = 0 =⇒ u(x , t) = C0

(non-unique equilibrium)





∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L, 0 ≤ t < ∞

General steady-state solution: u(x , t) = C0 + C1x ,
where C0, C1 are constant.

Boundary conditions: ∂u

∂x
(0, t) = 0, ∂u

∂x
(L, t) = 1.

C1 = 0, C1 = 1 =⇒ no equilibrium



Homework

cρ
∂u

∂t
=

∂

∂x

(
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∂u

∂x

)

+ Q, 0 ≤ x ≤ L, 0 ≤ t < ∞

Boundary conditions: ∂u

∂x
(0, t) = u(0, t) − u0,

∂u

∂x
(L, t) = α.

Suppose K0 = const and Q(x , t)/K0 = x ,
0 ≤ x ≤ L, t ≥ 0.

Problem. Find the steady-state solution of the
boundary problem.



Solution

Let u be a steady-state solution of the heat
equation. Then u(x , t) = v(x), where
v : [0, L] → R satisfies the following ODE:

(K0v
′)′ + Q = 0.

Since K0 = const > 0, it follows that
v ′′ + Q/K0 = 0.

Hence v ′′(x) + x = 0 for 0 ≤ x ≤ L.

v ′′(x) = −x =⇒ v ′(x) = −
x

2

2
+ C1 =⇒

v(x) = −
x

3

6
+ C1x + C2,

where C1, C2 are constants.



v ′(x) = −x2/2 + C1,
v(x) = −x3/6 + C1x + C2, 0 ≤ x ≤ L.

Boundary conditions are satisfied if
v ′(0) = v(0) − u0 and v ′(L) = α.

That is, if C1 = C2 − u0, −L2/2 + C1 = α.

It follows that C1 = α + L2/2, C2 = α + L2/2 + u0.

unique solution:

u(x , t) = −x3/6 + (α + L2/2)x + α + L2/2 + u0

= −x3/6 + (α + L2/2)(x + 1) + u0.



New equation

∂2u

∂w ∂z
= 0, u = u(w , z)

Domain: a1 ≤ w ≤ a2, b1 ≤ z ≤ b2.

(we allow intervals [a1, a2] and [b1, b2] to be infinite
or semi-infinite)

∂

∂w

(

∂u

∂z

)

= 0,
∂u

∂z
(w , z) = γ(z)

u(w , z) =

∫

z

z0

γ(ξ) dξ + C (w)

u(w , z) = B(z) + C (w) (general solution)



Wave equation

∂2u
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= c2
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Change of independent variables:
w = x + ct, z = x − ct.

How does the equation look in new coordinates?
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∂2u
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(
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−
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∂z

) (
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.

∂2u

∂x2
=

∂2u

∂w 2
+ 2

∂2u

∂w ∂z
+

∂2u
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.

∂2u

∂t2
− c2

∂2u

∂x2
= −4c2

∂2u

∂w ∂z
.

Wave equation in new coordinates:
∂2u

∂w ∂z
= 0.

General solution: u(x , t) = B(x − ct) + C (x + ct)

(d’Alembert, 1747)


