Math 412-501
Theory of Partial Differential Equations

Lecture 4: D’Alembert’s solution (continued).



Wave equation
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Change of independent variables:
w=Xx-+ct, z=x—ct.
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How does the equation look in new coordinates?
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Wave equation in new coordinates: =0.
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General solution:  |u(w,z) = B(z) + C(w)

where B, C : R — R are arbitrary (smooth)
functions.

General solution of the 1D wave equation:
u(x,t) = B(x — ct) + C(x + ct)

(d’Alembert’s solution)
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Initial value problem
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u(x,0) = f(x), (x 0) = g(x), —oo0 < x < 0.

General solution: u(x,t) = B(x — ct) + C(x + ct).

Functions B and C are determined by the initial
conditions:

f(x) = B(x)+ C(x), g(x)=—cB'(x)+ cC'(x).
B+C=f,c(-B+C) =



B+C=f,c(-B+C)=g.
B+ C=f, —B+ C= G, where G'=g/c
(G is determined up to adding a constant).

It follows that B = (f — G), C = 4(f + G).

u(x,t) = %(f(x— ct) + f(x + ct)
+Gu+ay—ax—a»

(d’Alembert’s formula)

In this formula, G may be an arbitrary
anti-derivative of g/c.

The solution is unique, but functions B and C are not!
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u(x, t) = %(f(x —ct) + f(x + ct)
4 G(x+ct) — G(x — ct)).

Since G’ = g/c, we have

G(x+ct)— Glx—ct) = = / e de
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(d’Alembert’s formula)




Example
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u(x,0) = cos 2x, (x,0) =sinx, —oo < x < 0.

ot

According to the (2nd) d’'Alembert’s formula, the
unique solution is

u(x, t) = %(f(x —ct) + f(x + ct)
+Gx+ct) = Gx - ct)),

where f(x) = cos2x, x € R, and G is an arbitrary

function such that G'(x) = X for all x € R.
c



COsS X

We can take G(x) = — . Then

c
u(x, t) = 3(cos 2(x — ct) + cos2(x + ct))
+ 5= (— cos(x + ct) + cos(x — ct)).
After simplifying,

1. :
u(x,t) = cos2ct - cos 2x + —sin ct - sin x.
c



Semi-infinite string

Initial-boundary value problem
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u(x,0) = fx), 5.(x.0)=g(x), x=0;
u(0,t) =0 (flxed end).

General solution: u(x,t) = B(x — ct) + C(x + ct).

Initial conditions imply:
f(x) = B(x)+ C(x), g(x)=—cB'(x)+ cC'(x),
x > 0.



B+C=f,c(-B+C)=g.
B+ C=f,—B+ C=G, where G'=g/c
(G is determined up to adding a constant).

It follows that B = (f — G), C = 3(f + G).
However this yields B(x) and C(x) only for x > 0.

Boundary condition implies:
B(—ct) + C(ct) =0 for all t € R.

That is, B(—x) = —C(x) and C(—x) = —B(x).
This yields B(x) and C(x) for x < 0.



Another approach

Initial value problem:
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u(x,0) = f(x), (x 0) = g(x), —oo < x < 0.

Lemma Suppose that the functions f and g are
odd, that is, f(—x) = —f(x) and g(—x) = —g(x)
for all x

Then the solution satisfies the fixed-end boundary
condition at the origin: u(0, t) = 0 for all t.



Proof: By the (3rd) d’Alembert’s formula,
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u(x,t):f(x ct);r (x+ct)+%/t 2(€) dé.
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Since f is odd, we have f(—ct) + f(ct) = 0.
Since g is odd, we have

[ s@ac=—["steree

ct

— /_Zg(§)d£:0



Initial-boundary value problem:
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u(x,0) = f(x), (x 0) =g(x), x>0;
u(0,t) =0 (flxed end).

The problem can be solved as follows:

e extend f and g to the whole line so that they
are odd;

e solve the initial value problem in the whole plane;
e restrict the solution to the half-plane x > 0.



Initial-boundary value problem:
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The problem can be solved as follows:

e extend f and g to the whole line so that they are
even: f(—x) = f(x) and g(—x) = g(x) for all x

e solve the initial value problem in the whole plane;
e restrict the solution to the half-plane x > 0 (the
boundary condition should hold).

—(0,t)=0 (free end).



