Math 412-501
Theory of Partial Differential Equations
Lecture 4: D'Alembert's solution (continued).

Wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, \quad-\infty<t<\infty
$$

Change of independent variables:

$$
w=x+c t, \quad z=x-c t .
$$

$$
\text { Jacobian: } \quad\left(\begin{array}{cc}
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial t} \\
\frac{\partial z}{\partial x} & \frac{\partial z}{\partial t}
\end{array}\right)=\left(\begin{array}{cc}
1 & c \\
1 & -c
\end{array}\right)
$$

How does the equation look in new coordinates?

$$
\begin{gathered}
\frac{\partial}{\partial t}=\frac{\partial w}{\partial t} \frac{\partial}{\partial w}+\frac{\partial z}{\partial t} \frac{\partial}{\partial z}=c \frac{\partial}{\partial w}-c \frac{\partial}{\partial z} \\
\frac{\partial}{\partial x}=\frac{\partial w}{\partial x} \frac{\partial}{\partial w}+\frac{\partial z}{\partial x} \frac{\partial}{\partial z}=\frac{\partial}{\partial w}+\frac{\partial}{\partial z}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial}{\partial w}-\frac{\partial}{\partial z}\right)\left(\frac{\partial}{\partial w}-\frac{\partial}{\partial z}\right) u \\
=c^{2}\left(\frac{\partial^{2} u}{\partial w^{2}}-2 \frac{\partial^{2} u}{\partial w \partial z}+\frac{\partial^{2} u}{\partial z^{2}}\right) \\
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial w^{2}}+2 \frac{\partial^{2} u}{\partial w \partial z}+\frac{\partial^{2} u}{\partial z^{2}} \\
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=-4 c^{2} \frac{\partial^{2} u}{\partial w \partial z}
\end{gathered} \text { Wave equation in new coordinates: } \frac{\partial^{2} u}{\partial w \partial z}=0 . ~ \$
$$

$$
\frac{\partial^{2} u}{\partial w \partial z}=0, \quad-\infty<w, z<\infty
$$

General solution:

$$
u(w, z)=B(z)+C(w)
$$

where $B, C: \mathbb{R} \rightarrow \mathbb{R}$ are arbitrary (smooth) functions.

General solution of the 1D wave equation:

$$
u(x, t)=B(x-c t)+C(x+c t)
$$

(d'Alembert's solution)

$$
\begin{gathered}
u(x, t)=B(x-c t) \\
t_{1}=0, t_{2}=1, t_{3}=2
\end{gathered}
$$

Initial value problem

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x, t<\infty \\
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad-\infty<x<\infty
\end{gathered}
$$

General solution: $u(x, t)=B(x-c t)+C(x+c t)$.
Functions B and C are determined by the initial conditions:
$f(x)=B(x)+C(x), \quad g(x)=-c B^{\prime}(x)+c C^{\prime}(x)$.
$B+C=f, c(-B+C)^{\prime}=g$.
$B+C=f, c(-B+C)^{\prime}=g$.
$B+C=f,-B+C=G$, where $G^{\prime}=g / c$
(G is determined up to adding a constant).
It follows that $B=\frac{1}{2}(f-G), C=\frac{1}{2}(f+G)$.

$$
\begin{aligned}
u(x, t)= & \frac{1}{2}(f(x-c t)+f(x+c t) \\
& +G(x+c t)-G(x-c t))
\end{aligned}
$$

(d'Alembert's formula)

In this formula, G may be an arbitrary anti-derivative of g / c.
The solution is unique, but functions B and C are not!

$$
t=0
$$

$$
0<t=t,<\frac{h}{c}
$$

$$
f=0
$$

$$
g=\chi_{[-h, h]}
$$

$$
G^{\prime}=g / c
$$

$$
F=-G
$$

$t=h / c$

$$
\frac{h}{c}<t=t_{3}
$$

$$
t_{3}<t=t_{4}
$$

$$
\begin{aligned}
u(x, t)= & \frac{1}{2}(f(x-c t)+f(x+c t) \\
& +G(x+c t)-G(x-c t))
\end{aligned}
$$

Since $G^{\prime}=g / c$, we have

$$
G(x+c t)-G(x-c t)=\frac{1}{c} \int_{x-c t}^{x+c t} g(\xi) d \xi
$$

$$
u(x, t)=\frac{f(x-c t)+f(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\xi) d \xi
$$

(d'Alembert's formula)

Example

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x, t<\infty \\
u(x, 0)=\cos 2 x, \quad \frac{\partial u}{\partial t}(x, 0)=\sin x, \quad-\infty<x<\infty
\end{gathered}
$$

According to the (ind) d'Alembert's formula, the unique solution is

$$
\begin{aligned}
u(x, t)= & \frac{1}{2}(f(x-c t)+f(x+c t) \\
& +G(x+c t)-G(x-c t))
\end{aligned}
$$

where $f(x)=\cos 2 x, x \in \mathbb{R}$, and G is an arbitrary function such that $G^{\prime}(x)=\frac{\sin x}{c}$ for all $x \in \mathbb{R}$.

We can take $G(x)=-\frac{\cos x}{c}$. Then

$$
\begin{aligned}
u(x, t)= & \frac{1}{2}(\cos 2(x-c t)+\cos 2(x+c t)) \\
& +\frac{1}{2 c}(-\cos (x+c t)+\cos (x-c t))
\end{aligned}
$$

After simplifying,

$$
u(x, t)=\cos 2 c t \cdot \cos 2 x+\frac{1}{c} \sin c t \cdot \sin x
$$

Semi-infinite string

Initial-boundary value problem

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad x \geq 0
$$

$u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad x \geq 0 ;$
$u(0, t)=0 \quad$ (fixed end).
General solution: $u(x, t)=B(x-c t)+C(x+c t)$. Initial conditions imply:
$f(x)=B(x)+C(x), \quad g(x)=-c B^{\prime}(x)+c C^{\prime}(x)$, $x \geq 0$.
$B+C=f, c(-B+C)^{\prime}=g$.
$B+C=f,-B+C=G$, where $G^{\prime}=g / c$
(G is determined up to adding a constant).
It follows that $B=\frac{1}{2}(f-G), C=\frac{1}{2}(f+G)$.
However this yields $B(x)$ and $C(x)$ only for $x \geq 0$.
Boundary condition implies: $B(-c t)+C(c t)=0$ for all $t \in \mathbb{R}$.
That is, $B(-x)=-C(x)$ and $C(-x)=-B(x)$.
This yields $B(x)$ and $C(x)$ for $x<0$.

Another approach

Initial value problem:

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x, t<\infty \\
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad-\infty<x<\infty
\end{gathered}
$$

Lemma Suppose that the functions f and g are odd, that is, $f(-x)=-f(x)$ and $g(-x)=-g(x)$ for all x.

Then the solution satisfies the fixed-end boundary condition at the origin: $u(0, t)=0$ for all t.

Proof: By the (3rd) d'Alembert's formula,

$$
u(x, t)=\frac{f(x-c t)+f(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\xi) d \xi
$$

Hence

$$
u(0, t)=\frac{f(-c t)+f(c t)}{2}+\frac{1}{2 c} \int_{-c t}^{c t} g(\xi) d \xi
$$

Since f is odd, we have $f(-c t)+f(c t)=0$.
Since g is odd, we have

$$
\begin{gathered}
\int_{-c t}^{0} g(\xi) d \xi=-\int_{0}^{c t} g(\xi) d \xi \\
\Longrightarrow \int_{-c t}^{c t} g(\xi) d \xi=0
\end{gathered}
$$

Initial-boundary value problem:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad x \geq 0
$$

$u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad x \geq 0 ;$
$u(0, t)=0 \quad$ (fixed end).
The problem can be solved as follows:

- extend f and g to the whole line so that they are odd;
- solve the initial value problem in the whole plane;
- restrict the solution to the half-plane $x \geq 0$.

Initial-boundary value problem:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad x \geq 0
$$

$u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad x \geq 0$;
$\frac{\partial u}{\partial x}(0, t)=0 \quad$ (free end).
The problem can be solved as follows:

- extend f and g to the whole line so that they are even: $f(-x)=f(x)$ and $g(-x)=g(x)$ for all x;
- solve the initial value problem in the whole plane;
- restrict the solution to the half-plane $x \geq 0$ (the boundary condition should hold).

