
Math 412-501

Theory of Partial Differential Equations

Lecture 4: D’Alembert’s solution (continued).



Wave equation

∂2u
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, −∞ < x < ∞, −∞ < t < ∞

Change of independent variables:
w = x + ct, z = x − ct.

Jacobian:
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How does the equation look in new coordinates?
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Wave equation in new coordinates:
∂2u

∂w ∂z
= 0.



∂2u

∂w ∂z
= 0, −∞ < w , z < ∞

General solution: u(w , z) = B(z) + C (w)

where B , C : R → R are arbitrary (smooth)
functions.

General solution of the 1D wave equation:

u(x , t) = B(x − ct) + C (x + ct)

(d’Alembert’s solution)



u(x , t) = B(x − ct)
t1 = 0, t2 = 1, t3 = 2



u(x , t) = C (x + ct)
t1 = 0, t2 = 1, t3 = 2



Initial value problem

∂2u

∂t2
= c2 ∂2u

∂x2
, −∞ < x , t < ∞,

u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x), −∞ < x < ∞.

General solution: u(x , t) = B(x − ct) + C (x + ct).

Functions B and C are determined by the initial
conditions:

f (x) = B(x) + C (x), g(x) = −cB ′(x) + cC ′(x).

B + C = f , c(−B + C )′ = g .



B + C = f , c(−B + C )′ = g .

B + C = f , −B + C = G , where G ′ = g/c

(G is determined up to adding a constant).

It follows that B = 1
2(f − G ), C = 1

2(f + G ).

u(x , t) = 1
2

(

f (x − ct) + f (x + ct)

+ G (x + ct) − G (x − ct)
)

(d’Alembert’s formula)

In this formula, G may be an arbitrary
anti-derivative of g/c .

The solution is unique, but functions B and C are not!



f = χ[−h,h]

g = 0



f = 0
g = χ[−h,h]

G ′ = g/c

F = −G



u(x , t) = 1
2

(

f (x − ct) + f (x + ct)

+ G (x + ct) − G (x − ct)
)

.

Since G ′ = g/c , we have

G (x + ct) − G (x − ct) =
1

c

∫

x+ct

x−ct

g(ξ) dξ.

u(x , t) =
f (x − ct) + f (x + ct)

2
+

1

2c

∫

x+ct

x−ct

g(ξ) dξ

(d’Alembert’s formula)



Example

∂2u

∂t2
= c2 ∂2u

∂x2
, −∞ < x , t < ∞,

u(x , 0) = cos 2x ,
∂u

∂t
(x , 0) = sin x , −∞ < x < ∞.

According to the (2nd) d’Alembert’s formula, the
unique solution is

u(x , t) = 1
2

(

f (x − ct) + f (x + ct)

+ G (x + ct) − G (x − ct)
)

,

where f (x) = cos 2x , x ∈ R, and G is an arbitrary

function such that G ′(x) =
sin x

c
for all x ∈ R.



We can take G (x) = −
cos x

c
. Then

u(x , t) = 1
2

(

cos 2(x − ct) + cos 2(x + ct)
)

+ 1
2c

(

− cos(x + ct) + cos(x − ct)
)

.

After simplifying,

u(x , t) = cos 2ct · cos 2x +
1

c
sin ct · sin x .



Semi-infinite string

Initial-boundary value problem

∂2u

∂t2
= c2 ∂2u

∂x2
, x ≥ 0;

u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x), x ≥ 0;

u(0, t) = 0 (fixed end).

General solution: u(x , t) = B(x − ct) + C (x + ct).

Initial conditions imply:

f (x) = B(x) + C (x), g(x) = −cB ′(x) + cC ′(x),
x ≥ 0.



B + C = f , c(−B + C )′ = g .

B + C = f , −B + C = G , where G ′ = g/c

(G is determined up to adding a constant).

It follows that B = 1
2(f − G ), C = 1

2(f + G ).

However this yields B(x) and C (x) only for x ≥ 0.

Boundary condition implies:

B(−ct) + C (ct) = 0 for all t ∈ R.

That is, B(−x) = −C (x) and C (−x) = −B(x).

This yields B(x) and C (x) for x < 0.



Another approach

Initial value problem:

∂2u

∂t2
= c2 ∂2u

∂x2
, −∞ < x , t < ∞,

u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x), −∞ < x < ∞.

Lemma Suppose that the functions f and g are
odd, that is, f (−x) = −f (x) and g(−x) = −g(x)
for all x .

Then the solution satisfies the fixed-end boundary
condition at the origin: u(0, t) = 0 for all t.



Proof: By the (3rd) d’Alembert’s formula,

u(x , t) =
f (x − ct) + f (x + ct)

2
+
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∫

x+ct

x−ct

g(ξ) dξ.

Hence

u(0, t) =
f (−ct) + f (ct)

2
+

1

2c

∫
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Since f is odd, we have f (−ct) + f (ct) = 0.
Since g is odd, we have

∫ 0

−ct

g(ξ) dξ = −

∫

ct
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=⇒

∫

ct

−ct

g(ξ) dξ = 0



Initial-boundary value problem:

∂2u

∂t2
= c2 ∂2u

∂x2
, x ≥ 0;

u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x), x ≥ 0;

u(0, t) = 0 (fixed end).

The problem can be solved as follows:
• extend f and g to the whole line so that they

are odd;
• solve the initial value problem in the whole plane;
• restrict the solution to the half-plane x ≥ 0.



Initial-boundary value problem:

∂2u

∂t2
= c2 ∂2u

∂x2
, x ≥ 0;

u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x), x ≥ 0;

∂u

∂x
(0, t) = 0 (free end).

The problem can be solved as follows:
• extend f and g to the whole line so that they are
even: f (−x) = f (x) and g(−x) = g(x) for all x ;
• solve the initial value problem in the whole plane;
• restrict the solution to the half-plane x ≥ 0 (the

boundary condition should hold).


