Math 412-501 Theory of Partial Differential Equations Lecture 5: Linearity and homogeneity.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Linearity

Linear space = a set V of objects that can be summed and multiplied by scalars (real numbers).

That is, for any $u, v \in V$ and $r \in \mathbb{R}$ expressions

$$u + v$$
 and ru

should make sense.

Certain restrictions apply. For instance,

$$u + v = v + u,$$

$$u + u = 2u.$$

Given $u_1, u_2, \ldots, u_k \in V$ and $r_1, r_2, \ldots, r_k \in \mathbb{R}$,

$$r_1u_1+r_2u_2+\cdots+r_ku_k$$

is called a **linear combination** of u_1, u_2, \ldots, u_k .

Examples

- \mathbb{R} : real numbers
- \mathbb{Z} : integers (**not** a linear space)
- \mathbb{R}^n (n > 1): *n*-dimensional vectors
- \mathbb{C} : complex numbers
- $F(\mathbb{R})$: all functions $f:\mathbb{R}\to\mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f : \mathbb{R} \to \mathbb{R}$
- $F(\mathbb{R}) \setminus C(\mathbb{R})$: all discontinuous functions
- $f: \mathbb{R} \to \mathbb{R}$ (**not** a linear space)
- $C^1[a, b]$: all continuously differentiable functions $f : [a, b] \rightarrow \mathbb{R}$

• $C^{\infty}[a, b]$: all smooth functions $f : [a, b] \to \mathbb{R}$

More examples

• $C^2([a, b] \times [c, d])$: twice continuously differentiable functions u = u(x, t), $a \le x \le b$,

$$c \leq t \leq d$$

• $\{u \in C^2([a, b] \times [c, d]) : u(a, t) = u(b, t) = 0\}$: twice continuously differentiable functions satisfying Dirichlet boundary conditions

• L[a, b]: integrable functions $f : [a, b] \to \mathbb{R}$; $\int_a^b |f(x)| dx < \infty$

• $L^2[a, b]$: square-integrable functions

 $f:[a,b] \to \mathbb{R}; \int_a^b |f(x)|^2 dx < \infty$

Note that $|f(x) + g(x)|^2 \le 2|f(x)|^2 + 2|g(x)|^2$.

Linear maps

Given linear spaces V_1 and V_2 , a map $A: V_1 \rightarrow V_2$ is **linear** if

$$A(v + u) = A(v) + A(u),$$

 $A(ru) = rA(u)$

for any $u, v \in V_1$ and $r \in \mathbb{R}$.

A linear map $\ell: V \to \mathbb{R}$ is called a **linear** functional on V.

If $V_1 = V_2$ (or if both V_1 and V_2 are functional spaces) then a linear map $L : V_1 \rightarrow V_2$ is called a **linear operator**.

Linear functionals

•
$$V = \mathbb{R}^{n}$$
, $\ell(v) = (v, v_{0})$, where $v_{0} \in V$.
• $V = C[a, b]$, $\ell(f) = f(a)$.
• $V = C^{1}[a, b]$, $\ell(f) = f'(b)$.
• $V = C[a, b]$, $\ell(f) = \int_{a}^{b} f(x) dx$.
• $V = C[a, b]$, $\ell(f) = \int_{a}^{b} g(x)f(x) dx$,
where $g \in C[a, b]$.

Linear operators

• $V = \mathbb{R}^n$, L(v) = Av, where A is an $n \times n$ matrix.

•
$$V = C[a, b], L(f) = gf$$
, where $g \in C[a, b].$
• $V_1 = C^1[a, b], V_2 = C[a, b], L(f) = f'.$
• $V = C[a, b], (L(f))(x) = \int_a^x f(\xi) d\xi.$
• $V = C[a, b], (L(f))(x) = \int_a^b G(x, \xi)f(\xi) d\xi,$
where $G \in C([a, b] \times [a, b]).$

•
$$V_1 = C([a, b], [c, d]), V_2 = C[c, d],$$

 $(L(u))(t) = u(a, t).$

Linear differential operators

- ordinary differential operator: $L = g_0 \frac{d^2}{dx^2} + g_1 \frac{d}{dx} + g_2 \quad (g_0, g_1, g_2 \text{ are functions})$
 - heat operator: $L = \frac{\partial}{\partial t} k \frac{\partial^2}{\partial x^2}$
 - wave operator: $L = \frac{\partial^2}{\partial t^2} c^2 \frac{\partial^2}{\partial x^2}$

(a.k.a. the d'Alembertian; denoted by \Box).

• Laplace's operator: $L = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

(a.k.a. the Laplacian; denoted by Δ or ∇^2).

Linear equations

An equation is called **linear** if it can be written in the form

$$L(u) = f$$
,

where $L: V_1 \rightarrow V_2$ is a linear map, $f \in V_2$ is given, and $u \in V_1$ is the unknown.

An equation is called **linear homogeneous** if it can be written in the form

$$L(u)=0,$$

where $L: V_1 \rightarrow V_2$ is a linear map and $u \in V_1$ is the unknown.

Remark. $(x + 1)^2 = x^2 \implies 2x = -1$ (linear)

Heat equation, wave equation, and Laplace's equation are linear homogeneous equations.

Korteweg-de Vries (KdV) equation:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0 \quad \text{(non-linear)}$$

Initial condition: u(x, 0) = f(x) (linear equation).

Boundary conditions $u(0, t) = u_0(t)$ and $\frac{\partial u}{\partial x}(0, t) = \phi(t)$ are linear equations.

Boundary conditions u(0, t) = 0 and $\frac{\partial u}{\partial x}(0, t) = 0$ are linear homogeneous equations.

Properties of linear spaces/maps/equations

Theorem (i) Suppose V_1 and V_2 are linear spaces. Then the set of all linear maps $L: V_1 \rightarrow V_2$ is also a linear space.

(ii) Composition of linear maps is also a linear map.(iii) The set of solutions of a linear homogeneous equation is a linear space.

How do we solve a linear homogeneous PDE? Step 1: Find some solutions.

Step 2: Form linear combinations of solutions obtained on Step 1.

Step 3: Show that every solution can be approximated by solutions obtained on Step 2.