Math 412-501
Theory of Partial Differential Equations
Lecture 5: Linearity and homogeneity.

Linearity

Linear space $=$ a set V of objects that can be summed and multiplied by scalars (real numbers).

That is, for any $u, v \in V$ and $r \in \mathbb{R}$ expressions

$$
u+v \text { and } r u
$$

should make sense.
Certain restrictions apply. For instance,

$$
\begin{gathered}
u+v=v+u \\
u+u=2 u
\end{gathered}
$$

Given $u_{1}, u_{2}, \ldots, u_{k} \in V$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$,

$$
r_{1} u_{1}+r_{2} u_{2}+\cdots+r_{k} u_{k}
$$

is called a linear combination of $u_{1}, u_{2}, \ldots, u_{k}$.

Examples

- \mathbb{R} : real numbers
- \mathbb{Z} : integers (not a linear space)
- $\mathbb{R}^{n}(n>1)$: n-dimensional vectors
- \mathbb{C} : complex numbers
- $F(\mathbb{R})$: all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $F(\mathbb{R}) \backslash C(\mathbb{R})$: all discontinuous functions
$f: \mathbb{R} \rightarrow \mathbb{R}$ (not a linear space)
- $C^{1}[a, b]$: all continuously differentiable functions
$f:[a, b] \rightarrow \mathbb{R}$
- $C^{\infty}[a, b]:$ all smooth functions $f:[a, b] \rightarrow \mathbb{R}$

More examples

- $C^{2}([a, b] \times[c, d]):$ twice continuously differentiable functions $u=u(x, t), a \leq x \leq b$, $c \leq t \leq d$
- $\left\{u \in C^{2}([a, b] \times[c, d]): u(a, t)=u(b, t)=0\right\}$: twice continuously differentiable functions satisfying Dirichlet boundary conditions
- $L[a, b]$: integrable functions $f:[a, b] \rightarrow \mathbb{R}$;
$\int_{a}^{b}|f(x)| d x<\infty$
- $L^{2}[a, b]$: square-integrable functions
$f:[a, b] \rightarrow \mathbb{R} ; \int_{a}^{b}|f(x)|^{2} d x<\infty$
Note that $|f(x)+g(x)|^{2} \leq 2|f(x)|^{2}+2|g(x)|^{2}$.

Linear maps

Given linear spaces V_{1} and V_{2}, a map $A: V_{1} \rightarrow V_{2}$ is linear if

$$
\begin{gathered}
A(v+u)=A(v)+A(u), \\
A(r u)=r A(u)
\end{gathered}
$$

for any $u, v \in V_{1}$ and $r \in \mathbb{R}$.
A linear map $\ell: V \rightarrow \mathbb{R}$ is called a linear functional on V.

If $V_{1}=V_{2}$ (or if both V_{1} and V_{2} are functional spaces) then a linear map $L: V_{1} \rightarrow V_{2}$ is called a linear operator.

Linear functionals

- $V=\mathbb{R}^{n}, \quad \ell(v)=\left(v, v_{0}\right)$, where $v_{0} \in V$.
- $V=C[a, b], \quad \ell(f)=f(a)$.
- $V=C^{1}[a, b], \quad \ell(f)=f^{\prime}(b)$.
- $V=C[a, b], \quad \ell(f)=\int_{a}^{b} f(x) d x$.
- $V=C[a, b], \quad \ell(f)=\int_{a}^{b} g(x) f(x) d x$, where $g \in C[a, b]$.

Linear operators

- $V=\mathbb{R}^{n}, L(v)=A v$, where A is an $n \times n$ matrix.
- $V=C[a, b], \quad L(f)=g f$, where $g \in C[a, b]$.
- $V_{1}=C^{1}[a, b], V_{2}=C[a, b], \quad L(f)=f^{\prime}$.
- $V=C[a, b], \quad(L(f))(x)=\int_{a}^{x} f(\xi) d \xi$.
- $V=C[a, b], \quad(L(f))(x)=\int_{a}^{b} G(x, \xi) f(\xi) d \xi$, where $G \in C([a, b] \times[a, b])$.
- $V_{1}=C([a, b],[c, d]), V_{2}=C[c, d]$,
$(L(u))(t)=u(a, t)$.

Linear differential operators

- ordinary differential operator:
$L=g_{0} \frac{d^{2}}{d x^{2}}+g_{1} \frac{d}{d x}+g_{2} \quad\left(g_{0}, g_{1}, g_{2}\right.$ are functions $)$
- heat operator: $L=\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}$
- wave operator: $L=\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}$
(a.k.a. the d'Alembertian; denoted by \square).
- Laplace's operator: $L=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$
(a.k.a. the Laplacian; denoted by Δ or ∇^{2}).

Linear equations

An equation is called linear if it can be written in the form

$$
L(u)=f
$$

where $L: V_{1} \rightarrow V_{2}$ is a linear map, $f \in V_{2}$ is given, and $u \in V_{1}$ is the unknown.

An equation is called linear homogeneous if it can be written in the form

$$
L(u)=0
$$

where $L: V_{1} \rightarrow V_{2}$ is a linear map and $u \in V_{1}$ is the unknown.

Remark. $(x+1)^{2}=x^{2} \Longrightarrow 2 x=-1$ (linear) Heat equation, wave equation, and Laplace's equation are linear homogeneous equations.
Korteweg-de Vries (KdV) equation:

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{\partial^{3} u}{\partial x^{3}}=0 \quad \text { (non-linear) }
$$

Initial condition: $u(x, 0)=f(x)$ (linear equation).
Boundary conditions $u(0, t)=u_{0}(t)$ and $\frac{\partial u}{\partial x}(0, t)=\phi(t)$ are linear equations.
Boundary conditions $u(0, t)=0$ and $\frac{\partial u}{\partial x}(0, t)=0$ are linear homogeneous equations.

Properties of linear spaces/maps/equations

Theorem (i) Suppose V_{1} and V_{2} are linear spaces.
Then the set of all linear maps $L: V_{1} \rightarrow V_{2}$ is also a linear space.
(ii) Composition of linear maps is also a linear map.
(iii) The set of solutions of a linear homogeneous equation is a linear space.

How do we solve a linear homogeneous PDE?
Step 1: Find some solutions.
Step 2: Form linear combinations of solutions obtained on Step 1.
Step 3: Show that every solution can be approximated by solutions obtained on Step 2.

