
Math 412-501

Theory of Partial Differential Equations

Lecture 6: Separation of variables.



How do we solve a linear homogeneous PDE?

Step 1: Find some solutions.

Step 2: Form linear combinations of solutions
obtained on Step 1.

Step 3: Show that every solution can be
approximated by solutions obtained on Step 2.

Similarly, we solve a linear homogeneous PDE with
linear homogeneous boundary conditions (boundary
problem).

One way to complete Step 1: the method of
separation of variables.



Separation of variables

The method applies to certain linear PDEs. It is
used to find some solutions.

Basic idea: to find a solution of the PDE (function
of many variables) as a combination of several
functions, each depending only on one variable.

For example, u(x , t) = B(x) + C (t) or
u(x , t) = B(x)C (t).

The first example works perfectly for one equation:
∂2u

∂t ∂x
= 0.

The second example proved useful for many

equations.



Heat equation

∂u

∂t
= k

∂2u

∂x2

Suppose u(x , t) = φ(x)G (t). Then

∂u

∂t
= φ(x)

dG

dt
,

∂2u

∂x2
=

d2φ

dx2
G (t).

Hence

φ(x)
dG

dt
= k

d2φ

dx2
G (t).

Divide both sides by k · φ(x) · G (t) = k · u(x , t):

1

kG
·
dG

dt
=

1

φ
·
d2φ

dx2
.



It follows that

1

kG
·
dG

dt
=

1

φ
·
d2φ

dx2
= −λ = const.

λ is called the separation constant. The variables
have been separated:

d2φ
dx2 = −λφ,

dG
dt

= −λkG .

Proposition Suppose φ and G are solutions of the
above ODEs for the same value of λ. Then
u(x , t) = φ(x)G (t) is a solution of the heat
equation.

Example. u(x , t) = e−kt sin x .



dG

dt
= −λkG

General solution: G (t) = C0e
−λkt , C0 = const.

d2φ

dx2
= −λφ

Three cases: λ > 0, λ = 0, λ < 0.

Case 1: λ > 0. Then λ = µ2, where µ > 0.
φ(x) = C1 cos µx + C2 sin µx , C1, C2 = const.

Case 2: λ = 0. φ(x) = C1 + C2x .

Case 3: λ < 0. Then λ = −µ2, where µ > 0.
φ(x) = C1e

µx + C2e
−µx .



Theorem For any C1, C2 ∈ R and µ > 0,
the functions

u+(x , t) = e−kµ2t(C1 cos µx + C2 sin µx),

u0(x , t) = C1 + C2x ,

u−(x , t) = ekµ2t(C1e
µx + C2e

−µx)

are solutions of the heat equation

∂u

∂t
= k

∂2u

∂x2
.



Wave equation

∂2u

∂t2
= c2 ∂2u

∂x2

Suppose u(x , t) = φ(x)G (t). Then

∂2u

∂t2
= φ(x)

d2G

dt2
,

∂2u

∂x2
=

d2φ

dx2
G (t).

Hence

φ(x)
d2G

dt2
= c2 d2φ

dx2
G (t).

Divide both sides by c2 · φ(x) · G (t) = c2 · u(x , t):

1

c2G
·
d2G

dt2
=

1

φ
·
d2φ

dx2
.



It follows that

1

c2G
·
d2G

dt2
=

1

φ
·
d2φ

dx2
= −λ = const.

The variables have been separated:

d2φ

dx2
= −λφ,

d2G

dt2
= −λc2G .

Proposition Suppose φ and G are solutions of the
above ODEs for the same value of λ. Then
u(x , t) = φ(x)G (t) is a solution of the wave
equation.

Example. u(x , t) = cos ct · sin x .



Theorem For any C1, C2, D1, D2 ∈ R and µ > 0,
the functions

u+(x , t) = (D1 cos cµt + D2 sin cµt)

× (C1 cos µx + C2 sin µx),

u0(x , t) = (D1 + D2t)(C1 + C2x),

u−(x , t) = (D1e
cµt + D2e

−cµt)(C1e
µx + C2e

−µx)

are solutions of the wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
.



Laplace’s equation

∂2u

∂x2
+

∂2u

∂y 2
= 0

Proposition Suppose that

d2φ

dx2
= −λφ,

d2h

dy 2
= λh,

where λ = const. Then u(x , y) = φ(x)h(y) is a
solution of Laplace’s equation.

Proof: ∂2u
∂x2 = φ′′(x)h(y) = −λφ(x)h(y),

∂2u
∂y2 = φ(x)h′′(y) = λφ(x)h(y). Hence ∆u = 0.

Example. u(x , y) = ey sin x .



Boundary value problem for the heat equation

∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L,

u(0, t) = u(L, t) = 0.

We are looking for solutions u(x , t) = φ(x)G (t).

PDE holds if
d2φ
dx2 = −λφ,

dG
dt

= −λkG

for the same constant λ.

Boundary conditions hold if
φ(0) = φ(L) = 0.



Boundary value problem:

d2φ

dx2
= −λφ, 0 ≤ x ≤ L,

φ(0) = φ(L) = 0.

There is an obvious solution: 0.
When is it not unique?

If for some value of λ the boundary value problem
has a nonzero solution φ, then this λ is called an
eigenvalue and φ is called an eigenfunction.

The eigenvalue problem is to find all eigenvalues
(and corresponding eigenfunctions).


