Math 412-501
Theory of Partial Differential Equations
Lecture 6: Separation of variables.

How do we solve a linear homogeneous PDE?
Step 1: Find some solutions.
Step 2: Form linear combinations of solutions obtained on Step 1.

Step 3: Show that every solution can be approximated by solutions obtained on Step 2.

Similarly, we solve a linear homogeneous PDE with linear homogeneous boundary conditions (boundary problem).

One way to complete Step 1: the method of separation of variables.

Separation of variables

The method applies to certain linear PDEs. It is used to find some solutions.

Basic idea: to find a solution of the PDE (function of many variables) as a combination of several functions, each depending only on one variable.
For example, $u(x, t)=B(x)+C(t)$ or $u(x, t)=B(x) C(t)$.
The first example works perfectly for one equation: $\frac{\partial^{2} u}{\partial t \partial x}=0$.
The second example proved useful for many equations.

Heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

Suppose $u(x, t)=\phi(x) G(t)$. Then

$$
\frac{\partial u}{\partial t}=\phi(x) \frac{d G}{d t}, \quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{d^{2} \phi}{d x^{2}} G(t)
$$

Hence

$$
\phi(x) \frac{d G}{d t}=k \frac{d^{2} \phi}{d x^{2}} G(t)
$$

Divide both sides by $k \cdot \phi(x) \cdot G(t)=k \cdot u(x, t)$:

$$
\frac{1}{k G} \cdot \frac{d G}{d t}=\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}} .
$$

It follows that

$$
\frac{1}{k G} \cdot \frac{d G}{d t}=\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}}=-\lambda=\text { const. }
$$

λ is called the separation constant. The variables have been separated:

$$
\begin{gathered}
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi \\
\frac{d G}{d t}=-\lambda k G
\end{gathered}
$$

Proposition Suppose ϕ and G are solutions of the above ODEs for the same value of λ. Then $u(x, t)=\phi(x) G(t)$ is a solution of the heat equation.
Example. $u(x, t)=e^{-k t} \sin x$.

$$
\frac{d G}{d t}=-\lambda k G
$$

General solution: $G(t)=C_{0} e^{-\lambda k t}, C_{0}=$ const.

$$
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi
$$

Three cases: $\lambda>0, \lambda=0, \lambda<0$.
Case 1: $\lambda>0$. Then $\lambda=\mu^{2}$, where $\mu>0$. $\phi(x)=C_{1} \cos \mu x+C_{2} \sin \mu x, \quad C_{1}, C_{2}=$ const.
Case 2: $\lambda=0$. $\quad \phi(x)=C_{1}+C_{2} x$.
Case 3: $\lambda<0$. Then $\lambda=-\mu^{2}$, where $\mu>0$. $\phi(x)=C_{1} e^{\mu x}+C_{2} e^{-\mu x}$.

Theorem For any $C_{1}, C_{2} \in \mathbb{R}$ and $\mu>0$, the functions

$$
\begin{aligned}
& u_{+}(x, t)=e^{-k \mu^{2} t}\left(C_{1} \cos \mu x+C_{2} \sin \mu x\right), \\
& u_{0}(x, t)=C_{1}+C_{2} x \\
& u_{-}(x, t)=e^{k \mu^{2} t}\left(C_{1} e^{\mu x}+C_{2} e^{-\mu x}\right)
\end{aligned}
$$

are solutions of the heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} .
$$

Wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Suppose $u(x, t)=\phi(x) G(t)$. Then

$$
\frac{\partial^{2} u}{\partial t^{2}}=\phi(x) \frac{d^{2} G}{d t^{2}}, \quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{d^{2} \phi}{d x^{2}} G(t)
$$

Hence

$$
\phi(x) \frac{d^{2} G}{d t^{2}}=c^{2} \frac{d^{2} \phi}{d x^{2}} G(t)
$$

Divide both sides by $c^{2} \cdot \phi(x) \cdot G(t)=c^{2} \cdot u(x, t)$:

$$
\frac{1}{c^{2} G} \cdot \frac{d^{2} G}{d t^{2}}=\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}}
$$

It follows that

$$
\frac{1}{c^{2} G} \cdot \frac{d^{2} G}{d t^{2}}=\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}}=-\lambda=\text { const. }
$$

The variables have been separated:

$$
\begin{aligned}
\frac{d^{2} \phi}{d x^{2}} & =-\lambda \phi \\
\frac{d^{2} G}{d t^{2}} & =-\lambda c^{2} G
\end{aligned}
$$

Proposition Suppose ϕ and G are solutions of the above ODEs for the same value of λ. Then $u(x, t)=\phi(x) G(t)$ is a solution of the wave equation.

Example. $u(x, t)=\cos c t \cdot \sin x$.

Theorem For any $C_{1}, C_{2}, D_{1}, D_{2} \in \mathbb{R}$ and $\mu>0$, the functions

$$
\begin{aligned}
u_{+}(x, t)= & \left(D_{1} \cos c \mu t+D_{2} \sin c \mu t\right) \\
& \times\left(C_{1} \cos \mu x+C_{2} \sin \mu x\right) \\
u_{0}(x, t)= & \left(D_{1}+D_{2} t\right)\left(C_{1}+C_{2} x\right) \\
u_{-}(x, t)= & \left(D_{1} e^{c \mu t}+D_{2} e^{-c \mu t}\right)\left(C_{1} e^{\mu x}+C_{2} e^{-\mu x}\right)
\end{aligned}
$$

are solutions of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Proposition Suppose that

$$
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi, \quad \frac{d^{2} h}{d y^{2}}=\lambda h
$$

where $\lambda=$ const. Then $u(x, y)=\phi(x) h(y)$ is a solution of Laplace's equation.
Proof: $\quad \frac{\partial^{2} u}{\partial x^{2}}=\phi^{\prime \prime}(x) h(y)=-\lambda \phi(x) h(y)$,
$\frac{\partial^{2} u}{\partial y^{2}}=\phi(x) h^{\prime \prime}(y)=\lambda \phi(x) h(y)$. Hence $\Delta u=0$.
Example. $u(x, y)=e^{y} \sin x$.

Boundary value problem for the heat equation

$$
\begin{gathered}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L \\
u(0, t)=u(L, t)=0
\end{gathered}
$$

We are looking for solutions $u(x, t)=\phi(x) G(t)$.
PDE holds if

$$
\begin{aligned}
& \frac{d^{2} \phi}{d x^{2}}=-\lambda \phi, \\
& \frac{d G}{d t}=-\lambda k G
\end{aligned}
$$

for the same constant λ.
Boundary conditions hold if

$$
\phi(0)=\phi(L)=0 .
$$

Boundary value problem:

$$
\begin{gathered}
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi, \quad 0 \leq x \leq L \\
\phi(0)=\phi(L)=0
\end{gathered}
$$

There is an obvious solution: 0 . When is it not unique?
If for some value of λ the boundary value problem has a nonzero solution ϕ, then this λ is called an eigenvalue and ϕ is called an eigenfunction.
The eigenvalue problem is to find all eigenvalues (and corresponding eigenfunctions).

