
Math 412-501

Theory of Partial Differential Equations

Lecture 7: Eigenvalue problems.

Solution of the initial-boundary value problem

for the heat equation.



Boundary value problem for the heat equation

∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L,

u(0, t) = u(L, t) = 0.

We are looking for solutions u(x , t) = φ(x)G (t).

PDE holds if
d2φ
dx2 = −λφ,

dG

dt
= −λkG

for the same constant λ.

Boundary conditions hold if
φ(0) = φ(L) = 0.



Boundary value problem:

d2φ

dx2
= −λφ, 0 ≤ x ≤ L,

φ(0) = φ(L) = 0.

There is an obvious solution: 0.
When is it not unique?

If for some value of λ the boundary value problem
has a nonzero solution φ, then this λ is called an
eigenvalue and φ is called an eigenfunction.

The eigenvalue problem is to find all eigenvalues
(and corresponding eigenfunctions).



Matrices vs. differential operators

Suppose A is an n × n matrix, v ∈ R
n is a nonzero

vector, and λ = const. If Av = λv then λ is an
eigenvalue of A and v is an eigenvector.

d2φ

dx2
= −λφ, 0 ≤ x ≤ L,

φ(0) = φ(L) = 0.

Instead of A, we have the linear operator − d2

dx2 .

Instead of R
n, we have the linear space

V = {φ ∈ C 2[0, L] : φ(0) = φ(L) = 0}.



Eigenvalue problem

φ′′ = −λφ, φ(0) = φ(L) = 0.

We are looking only for real eigenvalues.

Three cases: λ > 0, λ = 0, λ < 0.

Case 1: λ > 0. φ(x) = C1 cos µx + C2 sin µx ,
where λ = µ2, µ > 0.

φ(0) = φ(L) = 0 =⇒ C1 = 0, C2 sin µL = 0.

A nonzero solution exists if µL = nπ, n ∈ Z.

So λn = (nπ
L

)2, n = 1, 2, . . . are eigenvalues and

φn(x) = sin nπx

L
are corresponding eigenfunctions.



Eigenfunctions

φn(x) = sin nπx

L

Are there other eigenfunctions?



Case 2: λ = 0. φ(x) = C1 + C2x .

φ(0) = φ(L) = 0 =⇒ C1 = C1 + C2L = 0
=⇒ C1 = C2 = 0.

Case 3: λ < 0. φ(x) = C1e
µx + C2e

−µx ,
where λ = −µ2, µ > 0.

cosh z =
ez + e−z

2
sinh z =

ez − e−z

2

ez = cosh z + sinh z , e−z = cosh z − sinh z .

φ(x) = D1 cosh µx + D2 sinh µx , D1, D2 = const.

φ(0) = 0 =⇒ D1 = 0

φ(L) = 0 =⇒ D2 sinh µL = 0 =⇒ D2 = 0



Hyperbolic functions



There is another way to show that all eigenvalues
are positive. Given an eigenfunction φ, let

I =

∫

L

0

φ′′(x)φ(x) dx .

Since φ′′ = −λφ, we have

I = −λ

∫

L

0

|φ(x)|2 dx .

Integrating by parts, we obtain

I = φ′(L)φ(L) − φ′(0)φ(0) −

∫

L

0

φ′(x)φ′(x) dx .

Hence

λ

∫

L

0

|φ(x)|2 dx =

∫

L

0

|φ′(x)|2 dx .

=⇒ either λ > 0, or else λ = 0 and φ = const.



Summary

Eigenvalue problem: φ′′ = −λφ, φ(0) = φ(L) = 0.

Eigenvalues: λn = (nπ
L

)2, n = 1, 2, . . .

Eigenfunctions: φn(x) = sin nπx

L
.

Solution of the heat equation: u(x , t) = φ(x)G (t).
dG

dt
= −λkG =⇒ G (t) = C0 exp(−λkt)

Theorem For n = 1, 2, . . . , the function

u(x , t) = e−λnktφn(x) = exp(−n2π2

L2 kt) sin nπx

L

is a solution of the following boundary value
problem for the heat equation:

∂u

∂t
= k

∂2u

∂x2
, u(0, t) = u(L, t) = 0.



Initial-boundary value problem

∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L,

u(x , 0) = f (x), u(0, t) = u(L, t) = 0.

Function u(x , t) = e−λnktφn(x) is a solution of the
boundary value problem. Initial condition is satisfied
if f = φn. For any B1, B2, . . . , BN ∈ R the function

u(x , t) =
∑N

n=1
Bne

−λnktφn(x)

is also a solution of the boundary value problem.
This time the initial condition is satisfied if

f (x) =
∑N

n=1
Bnφn(x) =

∑N

n=1
Bn sin

nπx

L
.



From finite sums to series

Conjecture For suitably chosen coefficients
B1, B2, B3, . . . the function

u(x , t) =
∑∞

n=1
Bne

−λnktφn(x)

is a solution of the boundary value problem. This
solution satisfies the initial condition with

f (x) =
∑∞

n=1
Bnφn(x) =

∑∞

n=1
Bn sin

nπx

L
.

Theorem If
∑∞

n=1
|Bn| < ∞ then the conjecture is

true. Namely, u(x , t) is smooth for t > 0 and solves
the boundary value problem. Also, u(x , t) is
continuous for t ≥ 0 and satisfies the initial
condition.



How do we solve the initial-boundary value problem?

∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L,

u(x , 0) = f (x), u(0, t) = u(L, t) = 0.

• Expand the function f into a series

f (x) =
∑∞

n=1
Bn sin

nπx

L
.

• Write the solution:

u(x , t) =
∑∞

n=1
Bn exp

(

−
n2π2

L2
kt

)

sin
nπx

L
.

J. Fourier, The Analytical Theory of Heat

(written in 1807, published in 1822)


