Math 412-501
Theory of Partial Differential Equations

Lecture 7: Eigenvalue problems.
Solution of the initial-boundary value problem
for the heat equation.



Boundary value problem for the heat equation
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u(0,t) = u(L,t) = 0.

0<x<IL,

We are looking for solutions u(x,t) = ¢(x)G(t).
PDE holds if
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for the same constant ).
Boundary conditions hold if

¢(0) = o(L) = 0.



Boundary value problem:
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¢(0) = ¢(L) = 0.
There is an obvious solution: 0.
When is it not unique?

If for some value of A the boundary value problem
has a nonzero solution ¢, then this \ is called an
eigenvalue and ¢ is called an eigenfunction.

The eigenvalue problem is to find all eigenvalues
(and corresponding eigenfunctions).



Matrices vs. differential operators

Suppose A is an n X n matrix, v € R" is a nonzero

vector, and A = const. If then A is an

eigenvalue of A and v is an eigenvector.
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¢(0) = ¢(L) = 0.
Instead of A, we have the linear operator —5’722.

Instead of R”, we have the linear space

V = {6 € C*0,L] : ¢(0) = ¢(L) = 0}.



Eigenvalue problem

¢" =—=Ap,  ¢(0) =¢(L) =0.

We are looking only for real eigenvalues.
Three cases: A >0, A =0, A <0.
Case 1: A > 0. ¢(x) = G cospux + Cysin px,

where A = 12, > 0.
»(0)=¢(L)=0 = (G =0, GsinuL=0.
A nonzero solution exists if uL = nm, n € Z.
So Ay = ()%, n=1,2,... are eigenvalues and

nmx

¢n(x) = sin = are corresponding eigenfunctions.



Eigenfunctions

Are there other eigenfunctions?



Case 2: A =0. o(x) = G + Gx.

¢(0):¢(L):0_—_>C1:C1+C2L:0

— Cl = C2 =0.

Case 3: A < 0. o(x) = Ge™ + Ge™,
where A\ = —pu2, > 0.
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coshz:¥ sinhz:%
e = coshz +sinhz, e %= coshz — sinhz.
@(x) = Dy cosh pux + Dy sinh ux, Dy, D, = const.
»(0)=0 = D; =0
)

o»(L)=0 = D,sinhul=0 — D, =0




Hyperbolic functions

cosh z\ /
sinh z




There is another way to show that all eigenvalues
are positive. Given an eigenfunction ¢, let
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Since ¢ = —\¢, we haveL
| = —\ 2 dx.
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Integrating by parts, we obtain
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Hence

A oearax= [ 1660R o

—> either A > 0, or else A\ =0 and ¢ = const.




Summary
Eigenvalue problem: ¢ = —A\¢, ¢(0) = ¢(L) = 0.
Eigenvalues: A\, = (Z£)?, n=1,2,...

Eigenfunctions: ¢,(x) = sin 7=

Solution of the heat equation: u(x, t) = ¢(x)G(t).
46 — _\kG = G(t) = Gyexp(—\kt)

dt
Theorem For n=1,2,..., the function
u(x, t) = e Mk, (x) = exp(—”2L72r2 kt) sin 7%

is a solution of the following boundary value
problem for the heat equation:

ou 0%u
E = kw, U(O, t) = U(L, t) =0.



Initial-boundary value problem
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u(x,0) = f(x), wu(0,t)=u(L,t)=0.

0< x<IL,

Function u(x, t) = e **¢,(x) is a solution of the
boundary value problem. Initial condition is satisfied
if f =¢,. Forany By, B,, ..., By € R the function

u(x, t) = ZnN_l B,e " ¢ ,(x)

is also a solution of the boundary value problem.
This time the initial condition is satisfied if

f(x) = Z:l_l Bnon(x) = Z:I_l B, sin niLX



From finite sums to series

Conjecture For suitably chosen coefficients
B, B>, Bs, ... the function

u(x,t) = Y Bne M Mp,(x)

is a solution of the boundary value problem. This
solution satisfies the initial condition with

()= Buon(x) =Y Bysin ”LLX

Theorem |If > ° |B,| < co then the conjecture is
true. Namely, u(x, t) is smooth for t > 0 and solves
the boundary value problem. Also, u(x,t) is
continuous for t > 0 and satisfies the initial
condition.



How do we solve the initial-boundary value problem?
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u(x,0) = f(x), u(0,t) =u(L,t)=0.

0< x<IL,

e Expand the function f into a series
00 . nmx
f(x) = Zn:1 B, sin -

e \Write the solution:
2 2

u(x, t) = Z:O:l B, exp(—nL—Zkt) sin nLLX

J. Fourier, The Analytical Theory of Heat
(written in 1807, published in 1822)



