Math 412-501

Theory of Partial Differential Equations

Lecture 9: Fourier series.

Trigonometric polynomial

$$
p(x)=a_{0}+\sum_{n=1}^{N} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{N} b_{n} \sin \frac{n \pi x}{L} .
$$

- $p(x)$ is an infinitely smooth function
- $p(x)$ is $2 L$-periodic:
$p(x)=p(x+2 L)=p(x-2 L)$ for all x.
$p(x)$ is a finite linear combination of the functions
$1, \cos \frac{\pi x}{L}, \sin \frac{\pi x}{L}, \cos \frac{2 \pi x}{L}, \sin \frac{2 \pi x}{L}, \ldots$

For any positive integers n and m :

$$
\begin{aligned}
& \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x= \begin{cases}\frac{1}{2} L & \text { if } m=n \\
0 & \text { if } m \neq n\end{cases} \\
& \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x= \begin{cases}\frac{1}{2} L & \text { if } m=n \\
0 & \text { if } m \neq n\end{cases}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{-L}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x= \begin{cases}L & \text { if } m=n \\
0 & \text { if } m \neq n\end{cases} \\
& \int_{-L}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x= \begin{cases}L & \text { if } m=n \\
0 & \text { if } m \neq n\end{cases}
\end{aligned}
$$

Also,

$$
\begin{gathered}
\int_{-L}^{L} \sin \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x=0 . \\
\int_{-L}^{L} \cos \frac{n \pi x}{L} d x=\int_{-L}^{L} \sin \frac{n \pi x}{L} d x=0 . \\
\int_{-L}^{L} 1 d x=2 L .
\end{gathered}
$$

$$
\begin{aligned}
p(x)=a_{0}+ & \sum_{n=1}^{N} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{N} b_{n} \sin \frac{n \pi x}{L} . \\
& \int_{-L}^{L} p(x) d x=a_{0} \cdot 2 L
\end{aligned}
$$

For $1 \leq n \leq N$,

$$
\begin{aligned}
& \int_{-L}^{L} p(x) \cos \frac{n \pi x}{L} d x=a_{n} \cdot L . \\
& \int_{-L}^{L} p(x) \sin \frac{n \pi x}{L} d x=b_{n} \cdot L .
\end{aligned}
$$

$$
\begin{gathered}
p(x)=a_{0}+\sum_{n=1}^{N} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{N} b_{n} \sin \frac{n \pi x}{L} . \\
a_{0}=\frac{1}{2 L} \int_{-L}^{L} p(x) d x .
\end{gathered}
$$

For $1 \leq n \leq N$,

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} p(x) \cos \frac{n \pi x}{L} d x . \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} p(x) \sin \frac{n \pi x}{L} d x .
\end{aligned}
$$

Fourier series

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

Suppose $f:[-L, L] \rightarrow \mathbb{R}$ is an integrable function. Let

$$
a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x
$$

and for $n \geq 1$,

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

Then we obtain the Fourier series of f (associated to f) on the interval $[-L, L]$.

Questions

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

- When does a Fourier series converge everywhere? When does it converge uniformly?
- If a Fourier series does not converge everywhere, then what is the set of points where it converges?
- If a Fourier series is associated to a function, then how do convergence properties depend on the function?
- If a Fourier series is associated to a function, then how does the sum of the series relate to the function?

Answers

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

- Complete answers are never easy (and hardly possible) when dealing with the Fourier series!
- A Fourier series converges everywhere provided that $a_{n} \rightarrow 0$ and $b_{n} \rightarrow 0$ fast enough (however fast decay is not necessary).
- The Fourier series of a continuous function converges to this function almost everywhere.
- The Fourier series associated to a function converges everywhere provided that the function is piecewise smooth (condition may be relaxed).

Jump discontinuity
 Piecewise continuous $=$ finitely many jump discontinuities

Piecewise smooth function
(both function and its derivative are piecewise continuous)

Continuous, but not piecewise smooth function

Convergence theorem

Suppose $f:[-L, L] \rightarrow \mathbb{R}$ is a piecewise smooth function. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be the $2 L$-periodic extension of f. That is, F is $2 L$-periodic and $F(x)=f(x)$ for $-L<x \leq L$. Clearly, F is also piecewise smooth.
Theorem The Fourier series of the function f converges everywhere. The sum at a point x is equal to $F(x)$ if F is continuous at x. Otherwise the sum is equal to

$$
\frac{F(x-)+F(x+)}{2} .
$$

Function and its Fourier series

Fourier sine and cosine series

Suppose $f(x)$ is an integrable function on $[0, L]$. The Fourier sine series of f

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

and the Fourier cosine series of f

$$
A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}
$$

are defined as follows:

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

$A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, \quad A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n \geq 1$.
$f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}$,
where

$$
\begin{gathered}
a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n \geq 1, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x .
\end{gathered}
$$

If f is odd, $f(-x)=-f(x)$, then $a_{n}=0$ and

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Similarly, if f is even, $f(-x)=f(x)$, then $b_{n}=0$ and $a_{n}=A_{n}$.

Proposition (i) The Fourier series of an odd function $f:[-L, L] \rightarrow \mathbb{R}$ coincides with its Fourier sine series on $[0, L]$.
(ii) The Fourier series of an even function $f:[-L, L] \rightarrow \mathbb{R}$ coincides with its Fourier cosine series on $[0, L]$.

Conversely, the Fourier sine series of a function $f:[0, L] \rightarrow \mathbb{R}$ is the Fourier series of its odd extension to $[-L, L]$.

The Fourier cosine series of f is the Fourier series of its even extension to $[-L, L]$.

Fourier series
(2L-periodic)

Fourier cosine series
(2L-periodic and even)

