Math 412-501
Theory of Partial Differential Equations
Lecture 2-10: Sturm-Liouville eigenvalue problems (continued). Hilbert space.

Regular Sturm-Liouville eigenvalue problem:

$$
\begin{aligned}
& \frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b) \\
& \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 \\
& \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0
\end{aligned}
$$

Here $\beta_{i} \in \mathbb{R},\left|\beta_{1}\right|+\left|\beta_{2}\right| \neq 0,\left|\beta_{3}\right|+\left|\beta_{4}\right| \neq 0$.
Functions p, q, σ are continuous on $[a, b]$,
$p>0$ and $\sigma>0$ on $[a, b]$.

6 properties of a regular Sturm-Liouville problem

- Eigenvalues are real.
- Eigenvalues form an increasing sequence.
- n-th eigenfunction has $n-1$ zeros in (a, b).
- Eigenfunctions are orthogonal with weight σ.
- Eigenfunctions and eigenvalues are related through the Rayleigh quotient.
- Piecewise smooth functions can be expanded into generalized Fourier series of eigenfunctions.

Hilbert space

Hilbert space is an infinite-dimensional analog of Euclidean space. One realization is

$$
L_{2}[a, b]=\left\{f: \int_{a}^{b}|f(x)|^{2} d x<\infty\right\}
$$

Inner product of functions:

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

If f and g take complex values, then

$$
\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} d x
$$

so that

$$
\langle f, f\rangle=\int_{a}^{b}|f(x)|^{2} d x \geq 0
$$

Norm of a function: $\|f\|=\sqrt{\langle f, f\rangle}$.

Cauchy-Schwarz inequality: $|\langle f, g\rangle| \leq\|f\| \cdot\|g\|$.

If f, g are real-valued, then $\langle f, g\rangle=\|f\| \cdot\|g\| \cos \theta$, where θ is called the angle between f and g.

Convergence: we say that $f_{n} \rightarrow f$ in the mean if $\left\|f-f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Lemma If $f_{n} \rightarrow f$ in the mean then $\left\langle f_{n}, g\right\rangle \rightarrow\langle f, g\rangle$ for any $g \in L_{2}[a, b]$.
Proof:
$\left|\langle f, g\rangle-\left\langle f_{n}, g\right\rangle\right|=\left|\left\langle f-f_{n}, g\right\rangle\right| \leq\left\|f-f_{n}\right\| \cdot\|g\|$.

Functions $f, g \in L_{2}[a, b]$ are called orthogonal if $\langle f, g\rangle=0$.

Alternative inner product:

$$
\langle f, g\rangle_{w}=\int_{a}^{b} f(x) g(x) w(x) d x
$$

where $w>0$ is the weight function.
Functions f and g are called orthogonal with weight w if $\langle f, g\rangle_{w}=0$.

Alternative inner product means an alternative model of the Hilbert space:

$$
L_{2}([a, b], w d x)=\left\{f: \int_{a}^{b}|f(x)|^{2} w(x) d x<\infty\right\}
$$

A set f_{1}, f_{2}, \ldots of pairwise orthogonal nonzero functions is called complete if it is maximal, i.e., there is no nonzero function g such that $\left\langle g, f_{n}\right\rangle=0$, $n=1,2, \ldots$

A complete set forms a basis of the Hilbert space, that is, each function $g \in L_{2}[a, b]$ can be expanded into a series

$$
g=\sum_{n=1}^{\infty} c_{n} f_{n}
$$

that converges in the mean.
Then

$$
\langle g, h\rangle=\sum_{n=1}^{\infty} c_{n}\left\langle f_{n}, h\right\rangle
$$

for any $h \in L_{2}[a, b]$.

In particular,

$$
\left\langle g, f_{m}\right\rangle=\sum_{n=1}^{\infty} c_{n}\left\langle f_{n}, f_{m}\right\rangle=c_{m}\left\langle f_{m}, f_{m}\right\rangle
$$

\Longrightarrow the expansion is unique: $c_{m}=\frac{\left\langle g, f_{m}\right\rangle}{\left\langle f_{m}, f_{m}\right\rangle}$.
Also,

$$
\begin{aligned}
&\langle g, g\rangle= \sum_{n=1}^{\infty} c_{n}\left\langle f_{n}, g\right\rangle=\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}\left\langle f_{n}, f_{n}\right\rangle . \\
&\langle g, g\rangle=\sum_{n=1}^{\infty} \frac{\left|\left\langle g, f_{n}\right\rangle\right|^{2}}{\left\langle f_{n}, f_{n}\right\rangle}
\end{aligned}
$$

(Parseval's equality)

Suppose that f_{1}, f_{2}, \ldots is an orthonormal basis, i.e., $\left\|f_{n}\right\|=1$. Then

$$
g=\sum_{n=1}^{\infty} c_{n} f_{n}, \quad \text { where } \quad c_{n}=\left\langle g, f_{n}\right\rangle
$$

Parseval's equality becomes $\|g\|^{2}=\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}$.
If $h=\sum_{n=1}^{\infty} d_{n} f_{n}$, then

$$
\langle g, h\rangle=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c_{n} \overline{d_{m}}\left\langle f_{n}, f_{m}\right\rangle=\sum_{n=1}^{\infty} c_{n} \overline{d_{n}} .
$$

Which sequences c_{1}, c_{2}, \ldots are allowed as coefficients of an expansion?

Theorem For any sequence c_{1}, c_{2}, \ldots such that $\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}<\infty$, the series

$$
\sum_{n=1}^{\infty} c_{n} f_{n}
$$

converges in the mean to some function $g \in L_{2}[a, b]$.

This gives rise to another model of the Hilbert space: $\ell_{2}=\left\{\left(c_{1}, c_{2}, \ldots\right): \sum_{n=1}^{\infty}\left|c_{n}\right|^{2}<\infty\right\}$.

Given $\mathbf{c}=\left(c_{1}, c_{2}, \ldots\right), \mathbf{d}=\left(d_{1}, d_{2}, \ldots\right) \in \ell_{2}$, the inner product is

$$
\langle\mathbf{c}, \mathbf{d}\rangle=\sum_{n=1}^{\infty} c_{n} \overline{d_{n}} .
$$

Suppose f_{1}, f_{2}, \ldots is a set of pairwise orthogonal nonzero functions in $L_{2}[a, b]$ that is not complete.

For any function $g \in L_{2}[a, b]$, we can still compose a series $\sum_{n=1}^{\infty} c_{n} f_{n}$, where $c_{n}=\frac{\left\langle g, f_{n}\right\rangle}{\left\langle f_{n}, f_{n}\right\rangle}$.
This series converges in the mean to some function $g_{0} \in L_{2}[a, b]$. In general, $g \neq g_{0}$ but $g-g_{0}$ is orthogonal to f_{1}, f_{2}, \ldots.

Then $g=\sum_{n=1}^{\infty} c_{n} f_{n}+\left(g-g_{0}\right)$ implies
$\|g\|^{2}=\sum_{n=1}^{\infty}\left\|c_{n} f_{n}\right\|^{2}+\left\|g-g_{0}\right\|^{2} \geq \sum_{n=1}^{\infty}\left\|c_{n} f_{n}\right\|^{2}$.
Bessel's inequality: $\langle g, g\rangle \geq \sum_{n=1}^{\infty} \frac{\left|\left\langle g, f_{n}\right\rangle\right|^{2}}{\left\langle f_{n}, f_{n}\right\rangle}$
\mathcal{L} : linear operator in the Hilbert space $L_{2}[a, b]$. In general, \mathcal{L} is not defined on the whole space but on a linear subspace $\mathcal{H} \subset L_{2}[a, b]$ which is dense.
Example. $\mathcal{L}(f)=\left(p f^{\prime}\right)^{\prime}+q f$.
\mathcal{L} is called self-adjoint (or symmetric) if

$$
\langle\mathcal{L}(f), g\rangle=\langle f, \mathcal{L}(g)\rangle \quad \text { for all } \quad f, g \in \mathcal{H}
$$

If $\mathcal{L}(f)=\lambda f$ for some $\lambda \in \mathbb{C}$ and nonzero $f \in \mathcal{H}$, then λ is an eigenvalue and f is an eigenfunction.
If the operator \mathcal{L} is self-adjoint, then

- all eigenvalues are real;
- eigenfunctions belonging to different eigenvalues are orthogonal.

Regular Sturm-Liouville equation:

$$
\frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b)
$$

Consider a linear differential operator

$$
\mathcal{L}(f)=\left(p f^{\prime}\right)^{\prime}+q f
$$

Now the equation can be rewritten as

$$
\mathcal{L}(\phi)+\lambda \sigma \phi=0 .
$$

Green's formula:

$$
\int_{a}^{b}(g \mathcal{L}(f)-f \mathcal{L}(g)) d x=\left.p\left(g f^{\prime}-f g^{\prime}\right)\right|_{a} ^{b}
$$

If f and g satisfy the same regular boundary conditions, then

$$
\int_{a}^{b}(g \mathcal{L}(f)-f \mathcal{L}(g)) d x=0
$$

That is, \mathcal{L} is self-adjoint on the set of functions satisfying particular boundary conditions.

$$
\mathcal{L}(\phi)+\lambda \sigma \phi=0 \Longrightarrow-\sigma^{-1} \mathcal{L}(\phi)=\lambda \phi
$$

So eigenvalues/eigenfunctions of the Sturm-Liouville problem are not those of operator \mathcal{L} but those of operator $\mathcal{M}=-\sigma^{-1} \mathcal{L}$.
The operator \mathcal{M} is self-adjoint with respect to the inner product $\langle\cdot, \cdot\rangle_{\sigma}$.

Eigenvalue problem:

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \phi(0)=\phi(L)=0
$$

Eigenvalues: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=1,2, \ldots$
Eigenfunctions: $\phi_{n}(x)=\sin \frac{n \pi x}{L}$.
Since this is a regular Sturm-Liouville problem, eigenfunctions form a complete orthogonal set (a basis) in the Hilbert space $L_{2}[0, L]$.
Any function $f \in L_{2}[0, L]$ is expanded into a series

$$
f=\sum_{n=1}^{\infty} c_{n} \phi_{n}
$$

that converges in the mean.

Coefficients:

$$
c_{n}=\frac{\left\langle f, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

So the Fourier series always converges in the mean.
Parseval's equality:

$$
\begin{aligned}
\langle f, f\rangle= & \sum_{n=1}^{\infty} \frac{\left|\left\langle f, \phi_{n}\right\rangle\right|^{2}}{\left\langle\phi_{n}, \phi_{n}\right\rangle}=\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}\left\langle\phi_{n}, \phi_{n}\right\rangle . \\
& \frac{2}{L} \int_{0}^{L}|f(x)|^{2} d x=\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}
\end{aligned}
$$

(Parseval's equality for Fourier sine series)

Example. $f(x)=2 x, \quad 0 \leq x \leq \pi$.

$$
f(x) \sim \sum_{n=1}^{\infty}(-1)^{n+1} \frac{4}{n} \sin n x
$$

Parseval's equality:

$$
\frac{2}{\pi} \int_{0}^{\pi}(2 x)^{2} d x=\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}=\sum_{n=1}^{\infty} \frac{16}{n^{2}} .
$$

$$
\begin{gathered}
\frac{2}{\pi} \cdot \frac{4 \pi^{3}}{3}=\sum_{n=1}^{\infty} \frac{16}{n^{2}} \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
\end{gathered}
$$

Simplicity of eigenvalues

Regular Sturm-Liouville equation:

$$
\left(p \phi^{\prime}\right)^{\prime}+q \phi+\lambda \sigma \phi=0 \quad(a<x<b)
$$

Initial value problem $\phi(a)=C_{0}, \phi^{\prime}(a)=C_{1}$ always has a unique solution.
Suppose ϕ and ψ are eigenfunctions of a regular problem corresponding to the same eigenvalue λ. Then $\beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=\beta_{1} \psi(a)+\beta_{2} \psi^{\prime}(a)=0$, where $\beta_{1}, \beta_{2} \in \mathbb{R},\left|\beta_{1}\right|+\left|\beta_{2}\right| \neq 0$.
It follows that $\left(\phi(a), \phi^{\prime}(a)\right)=c\left(\psi(a), \psi^{\prime}(a)\right), c \in \mathbb{R}$.
Now ϕ and $c \psi$ are solutions to the same initial value problem. Hence $\phi=c \psi$.

