
Math 412-501

Theory of Partial Differential Equations

Lecture 2-10: Sturm-Liouville eigenvalue

problems (continued). Hilbert space.



Regular Sturm-Liouville eigenvalue problem:

d

dx

(

p
dφ

dx

)

+ qφ+ λσφ = 0 (a < x < b),

β1φ(a) + β2φ
′(a) = 0,

β3φ(b) + β4φ
′(b) = 0.

Here βi ∈ R, |β1| + |β2| 6= 0, |β3| + |β4| 6= 0.
Functions p, q, σ are continuous on [a, b],
p > 0 and σ > 0 on [a, b].



6 properties of a regular Sturm-Liouville problem

• Eigenvalues are real.

• Eigenvalues form an increasing sequence.

• n-th eigenfunction has n − 1 zeros in (a, b).

• Eigenfunctions are orthogonal with weight σ.

• Eigenfunctions and eigenvalues are related
through the Rayleigh quotient.

• Piecewise smooth functions can be expanded
into generalized Fourier series of eigenfunctions.



Hilbert space

Hilbert space is an infinite-dimensional analog of
Euclidean space. One realization is

L2[a, b] = {f :
∫

b

a
|f (x)|2 dx <∞}.

Inner product of functions:

〈f , g〉 =

∫

b

a

f (x)g(x) dx .

If f and g take complex values, then

〈f , g〉 =

∫

b

a

f (x)g(x) dx

so that

〈f , f 〉 =

∫

b

a

|f (x)|2 dx ≥ 0.



Norm of a function: ‖f ‖ =
√

〈f , f 〉.

Cauchy-Schwarz inequality: |〈f , g〉| ≤ ‖f ‖ · ‖g‖.

If f , g are real-valued, then 〈f , g〉 = ‖f ‖ · ‖g‖ cos θ,
where θ is called the angle between f and g .

Convergence: we say that fn → f in the mean if
‖f − fn‖ → 0 as n → ∞.

Lemma If fn → f in the mean then
〈fn, g〉 → 〈f , g〉 for any g ∈ L2[a, b].

Proof:

|〈f , g〉 − 〈fn, g〉| = |〈f − fn, g〉| ≤ ‖f − fn‖ · ‖g‖.



Functions f , g ∈ L2[a, b] are called orthogonal if
〈f , g〉 = 0.

Alternative inner product:

〈f , g〉w =

∫

b

a

f (x)g(x)w(x) dx ,

where w > 0 is the weight function.

Functions f and g are called orthogonal with

weight w if 〈f , g〉w = 0.

Alternative inner product means an alternative
model of the Hilbert space:

L2([a, b],w dx) = {f :
∫

b

a
|f (x)|2w(x) dx <∞}.



A set f1, f2, . . . of pairwise orthogonal nonzero
functions is called complete if it is maximal, i.e.,
there is no nonzero function g such that 〈g , fn〉 = 0,
n = 1, 2, . . . .

A complete set forms a basis of the Hilbert space,
that is, each function g ∈ L2[a, b] can be expanded
into a series

g =
∑∞

n=1
cnfn

that converges in the mean.

Then
〈g , h〉 =

∑∞

n=1
cn〈fn, h〉

for any h ∈ L2[a, b].



In particular,

〈g , fm〉 =
∑∞

n=1
cn〈fn, fm〉 = cm〈fm, fm〉.

=⇒ the expansion is unique: cm =
〈g , fm〉

〈fm, fm〉
.

Also,

〈g , g〉 =
∑∞

n=1
cn〈fn, g〉 =

∑∞

n=1
|cn|

2〈fn, fn〉.

〈g , g〉 =
∑∞

n=1

|〈g , fn〉|
2

〈fn, fn〉

(Parseval’s equality)



Suppose that f1, f2, . . . is an orthonormal basis,
i.e., ‖fn‖ = 1. Then

g =
∑∞

n=1
cnfn, where cn = 〈g , fn〉.

Parseval’s equality becomes ‖g‖2 =
∑∞

n=1
|cn|

2.

If h =
∑∞

n=1
dnfn, then

〈g , h〉 =
∑∞

n=1

∑∞

m=1
cndm〈fn, fm〉 =

∑∞

n=1
cndn.

Which sequences c1, c2, . . . are allowed as

coefficients of an expansion?



Theorem For any sequence c1, c2, . . . such that
∑∞

n=1
|cn|

2 <∞, the series
∑∞

n=1
cnfn

converges in the mean to some function
g ∈ L2[a, b].

This gives rise to another model of the Hilbert
space: ℓ2 = {(c1, c2, . . . ) :

∑∞
n=1

|cn|
2 <∞}.

Given c = (c1, c2, . . . ), d = (d1, d2, . . . ) ∈ ℓ2,
the inner product is

〈c,d〉 =
∑∞

n=1
cndn.



Suppose f1, f2, . . . is a set of pairwise orthogonal
nonzero functions in L2[a, b] that is not complete.

For any function g ∈ L2[a, b], we can still compose

a series
∑∞

n=1
cnfn, where cn =

〈g , fn〉

〈fn, fn〉
.

This series converges in the mean to some function
g0 ∈ L2[a, b]. In general, g 6= g0 but g − g0 is
orthogonal to f1, f2, . . . .

Then g =
∑∞

n=1
cnfn + (g − g0) implies

‖g‖2 =
∑∞

n=1
‖cnfn‖

2 + ‖g − g0‖
2 ≥

∑∞
n=1

‖cnfn‖
2.

Bessel’s inequality: 〈g , g〉 ≥
∑∞

n=1

|〈g , fn〉|
2

〈fn, fn〉



L: linear operator in the Hilbert space L2[a, b].

In general, L is not defined on the whole space but
on a linear subspace H ⊂ L2[a, b] which is dense.

Example. L(f ) = (pf ′)′ + qf .

L is called self-adjoint (or symmetric) if

〈L(f ), g〉 = 〈f ,L(g)〉 for all f , g ∈ H.

If L(f ) = λf for some λ ∈ C and nonzero f ∈ H,
then λ is an eigenvalue and f is an eigenfunction.

If the operator L is self-adjoint, then
• all eigenvalues are real;
• eigenfunctions belonging to different eigenvalues

are orthogonal.



Regular Sturm-Liouville equation:

d

dx

(

p
dφ

dx

)

+ qφ+ λσφ = 0 (a < x < b).

Consider a linear differential operator

L(f ) = (pf ′)′ + qf .

Now the equation can be rewritten as

L(φ) + λσφ = 0.

Green’s formula:
∫

b

a

(

gL(f ) − f L(g)
)

dx = p(gf ′ − fg ′)
∣

∣

∣

b

a



If f and g satisfy the same regular boundary
conditions, then

∫

b

a

(

gL(f ) − f L(g)
)

dx = 0.

That is, L is self-adjoint on the set of functions
satisfying particular boundary conditions.

L(φ) + λσφ = 0 =⇒ −σ−1L(φ) = λφ

So eigenvalues/eigenfunctions of the Sturm-Liouville
problem are not those of operator L but those of
operator M = −σ−1L.

The operator M is self-adjoint with respect to the
inner product 〈·, ·〉σ.



Eigenvalue problem:

φ′′ + λφ = 0, φ(0) = φ(L) = 0.

Eigenvalues: λn = (nπ

L
)2, n = 1, 2, . . .

Eigenfunctions: φn(x) = sin nπx

L
.

Since this is a regular Sturm-Liouville problem,
eigenfunctions form a complete orthogonal set
(a basis) in the Hilbert space L2[0, L].

Any function f ∈ L2[0, L] is expanded into a series

f =
∑∞

n=1
cnφn

that converges in the mean.



Coefficients:

cn =
〈f , φn〉

〈φn, φn〉
=

2

L

∫

L

0

f (x) sin
nπx

L
dx .

So the Fourier series always converges in the mean.

Parseval’s equality:

〈f , f 〉 =
∑∞

n=1

|〈f , φn〉|
2

〈φn, φn〉
=

∑∞

n=1
|cn|

2〈φn, φn〉.

2

L

∫

L

0

|f (x)|2 dx =
∑∞

n=1
|cn|

2

(Parseval’s equality for Fourier sine series)



Example. f (x) = 2x , 0 ≤ x ≤ π.

f (x) ∼
∑∞

n=1
(−1)n+1 4

n
sin nx

Parseval’s equality:

2

π

∫

π

0

(2x)2 dx =
∑∞

n=1
|cn|

2 =
∑∞

n=1

16

n2
.

2

π
·
4π3

3
=

∑∞

n=1

16

n2

∑∞

n=1

1

n2
=
π2

6



Simplicity of eigenvalues

Regular Sturm-Liouville equation:

(pφ′)′ + qφ+ λσφ = 0 (a < x < b).

Initial value problem φ(a) = C0, φ
′(a) = C1 always

has a unique solution.

Suppose φ and ψ are eigenfunctions of a regular
problem corresponding to the same eigenvalue λ.

Then β1φ(a) + β2φ
′(a) = β1ψ(a) + β2ψ

′(a) = 0,
where β1, β2 ∈ R, |β1| + |β2| 6= 0.

It follows that (φ(a), φ′(a)) = c(ψ(a), ψ′(a)), c ∈ R.

Now φ and cψ are solutions to the same initial
value problem. Hence φ = cψ.


