Math 412-501
Theory of Partial Differential Equations
Lecture 2-2:
Higher-dimensional wave equation.
Complex-valued functions and Laplace's equation.

One-dimensional heat equation

Describes heat conduction in a rod:

$$
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q
$$

$K_{0}=K_{0}(x), c=c(x), \rho=\rho(x), Q=Q(x, t)$.
Assuming K_{0}, c, ρ are constant (uniform rod) and $Q=0$ (no heat sources), we obtain

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

where $k=K_{0}(c \rho)^{-1}$.

Higher-dimensional heat equation

$$
c \rho \frac{\partial u}{\partial t}=\nabla \cdot\left(K_{0} \nabla u\right)+Q
$$

Assuming $K_{0}=$ const, we have

$$
c \rho \frac{\partial u}{\partial t}=K_{0} \nabla^{2} u+Q
$$

where $\nabla^{2} u=\nabla \cdot(\nabla u)=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}$.
Assuming $K_{0}, c, \rho=$ const (uniform medium) and $Q=0$ (no heat sources), we obtain

$$
\frac{\partial u}{\partial t}=k \nabla^{2} u
$$

where $k=K_{0}(c \rho)^{-1}$ is called the thermal diffusivity.

Notation

Each function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is assigned the gradient (a vector field) and the Laplacian (a function). Each vector field
$\vec{\phi}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is assigned the divergence (a function).
"physical" notation: $\quad \nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
gradient: $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$
divergence: $\nabla \cdot \vec{\phi}=\frac{\partial \phi_{x}}{\partial x}+\frac{\partial \phi_{y}}{\partial y}+\frac{\partial \phi_{z}}{\partial z}$
Laplacian: $\nabla^{2} f=\nabla \cdot(\nabla f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$
"mathematical" notation:
gradient: $\operatorname{grad} f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$
divergence: $\operatorname{div} \vec{\phi}=\frac{\partial \phi_{x}}{\partial x}+\frac{\partial \phi_{y}}{\partial y}+\frac{\partial \phi_{z}}{\partial z}$
Laplacian: $\Delta f=\operatorname{div}(\operatorname{grad} f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$

More notation

Each vector field $\vec{\phi}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is assigned the curl (another vector field).

If $\vec{\phi}=\left(\phi_{x}, \phi_{y}, \phi_{z}\right)$ then
$\operatorname{curl} \vec{\phi}=\left(\frac{\partial \phi_{z}}{\partial y}-\frac{\partial \phi_{y}}{\partial z}, \frac{\partial \phi_{x}}{\partial z}-\frac{\partial \phi_{z}}{\partial x}, \frac{\partial \phi_{y}}{\partial x}-\frac{\partial \phi_{x}}{\partial y}\right)$.
"physical" notation:

$$
\nabla \times \phi=\left|\begin{array}{ccc}
\mathbf{x} & \mathbf{y} & \mathbf{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\phi_{x} & \phi_{y} & \phi_{z}
\end{array}\right|
$$

where $\mathbf{x}=(1,0,0), \mathbf{y}=(0,1,0), \mathbf{z}=(0,0,1)$.

Vibration of a stretched membrane

$u(x, y, t)=$ vertical displacement
Newton's law: mass \times acceleration $=$ force
$\rho(x, y)=$ mass density
$T(x, y, t)=$ magnitude of tensile force
$Q(x, y, t)=$ other (vertical) forces on a unit mass

$\vec{F}=$ tensile force
$\vec{F}=T(x, y, t) \mathbf{t} \times \mathbf{n}$
vertical component $=\vec{F} \cdot \mathbf{z}$
mass \times acceleration:

$$
\iint_{D} \rho(x, y) \frac{\partial^{2} u}{\partial t^{2}} d x d y=\iint_{D} \rho \frac{\partial^{2} u}{\partial t^{2}} d A
$$

tensile force $=\oint_{\partial D} \vec{F} \cdot \mathbf{z} d s=\oint_{\partial D} T(\mathbf{t} \times \mathbf{n}) \cdot \mathbf{z} d s$
other forces $=\iint_{D} \rho Q d A$
Newton's law:
$\iint_{D} \rho \frac{\partial^{2} u}{\partial t^{2}} d A=\oint_{\partial D} T(\mathbf{t} \times \mathbf{n}) \cdot \mathbf{z} d s+\iint_{D} \rho Q d A$

Since $(\mathbf{t} \times \mathbf{n}) \cdot \mathbf{z}=(\mathbf{n} \times \mathbf{z}) \cdot \mathbf{t}$,

$$
\iint_{D} \rho \frac{\partial^{2} u}{\partial t^{2}} d A=\oint_{\partial D} T(\mathbf{n} \times \mathbf{z}) \cdot \mathbf{t} d s+\iint_{D} \rho Q d A .
$$

For any vector field \vec{B},

$$
\iint_{D}(\nabla \times \vec{B}) \cdot \mathbf{n} d A=\oint_{\partial D} \vec{B} \cdot \mathbf{t} d s
$$

(Stokes' theorem)

$\iint_{D} \rho \frac{\partial^{2} u}{\partial t^{2}} d A=\iint_{D}(\nabla \times T(\mathbf{n} \times \mathbf{z})) \cdot \mathbf{n} d A+\iint_{D} \rho Q d A$

Since D is an arbitrary domain,

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}=(\nabla \times T(\mathbf{n} \times \mathbf{z})) \cdot \mathbf{n}+\rho Q
$$

perfectly elastic membrane: we assume that $T(x, y, t) \approx T_{0}=$ const.

Equation of membrane: $H(x, y, z, t)=0$, where $H(x, y, z, t)=z-u(x, y, t)$.
Normal vector \mathbf{n} is proportional to
$\nabla H=\left(-\frac{\partial u}{\partial x},-\frac{\partial u}{\partial y}, 1\right)$.
We assume that $|\nabla H| \approx 1$ so that $\mathbf{n} \approx \nabla H$.

$$
\begin{gathered}
\rho \frac{\partial^{2} u}{\partial t^{2}}=T_{0}(\nabla \times(\nabla H \times \mathbf{z})) \cdot \nabla H+\rho Q \\
\nabla H \times \mathbf{z}=\left|\begin{array}{ccc}
\mathbf{x} & \mathbf{y} & \mathbf{z} \\
-\frac{\partial u}{\partial x} & -\frac{\partial u}{\partial y} & 1 \\
0 & 0 & 1
\end{array}\right|=-\frac{\partial u}{\partial y} \mathbf{x}+\frac{\partial u}{\partial x} \mathbf{y} \\
\nabla \times(\nabla H \times \mathbf{z})=\left|\begin{array}{ccc}
\mathbf{x} & \mathbf{y} & \mathbf{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-\frac{\partial u}{\partial y} & \frac{\partial u}{\partial x} & 0
\end{array}\right|=\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \mathbf{z} \\
\rho \frac{\partial^{2} u}{\partial t^{2}}=T_{0} \nabla^{2} u+\rho Q
\end{gathered}
$$

$$
\rho(x, y) \frac{\partial^{2} u}{\partial t^{2}}=T_{0} \nabla^{2} u+\rho(x, y) Q(x, y, t)
$$

Assuming $\rho=$ const and $Q=0$, we obtain

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u
$$

where $c^{2}=T_{0} / \rho$.
This is two-dimensional wave equation.

Complex numbers

\mathbb{C} : complex numbers.
$z=x+i y$, where $x, y \in \mathbb{R}$ and $i^{2}=-1$
(that is, $i=\sqrt{-1}$).
x is the real part of z, iy is the imaginary part of z.
$z=x+i y$ is identified with the vector $(x, y) \in \mathbb{R}^{2}$.
$z=r(\cos \phi+i \sin \phi)$, where $r \geq 0$ is the modulus of $z(r=|z|)$ and $\phi \in \mathbb{R}$ is the argument of z (determined up to adding a multiple of 2π).
$|x+i y|=\sqrt{x^{2}+y^{2}}$.

$z=x+i y$

$z=r(\cos \phi+i \sin \phi)$.

If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ then

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right), \\
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) \\
\text { If } z_{1}=r_{1}\left(\cos \phi_{1}+i \sin \phi_{1}\right) \text { and } \\
z_{2}=r_{2}\left(\cos \phi_{2}+i \sin \phi_{2}\right) \text {, then } \\
z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\phi_{1}+\phi_{2}\right)+i \sin \left(\phi_{1}+\phi_{2}\right)\right) .
\end{gathered}
$$

$e^{i \phi}=\cos \phi+i \sin \phi$ for any $\phi \in \mathbb{R}$.
Then $e^{i\left(\phi_{1}+\phi_{2}\right)}=e^{i \phi_{1}} e^{i \phi_{2}}, \phi_{1}, \phi_{2} \in \mathbb{R}$.
$z=r e^{i \phi}$, where r is the modulus, ϕ is the argument.

Given $z=x+i y$, the complex conjugate of z is $\bar{z}=x-i y$.
The conjugacy $z \mapsto \bar{z}$ is the reflection of \mathbb{C} in the real line.

$$
\begin{aligned}
& \overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}, \overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2} . \\
& z \bar{z}=|z|^{2}, \text { hence } z^{-1}=\frac{\bar{z}}{|z|^{2}} . \\
& \qquad(x+i y)^{-1}=\frac{x-i y}{x^{2}+y^{2}} .
\end{aligned}
$$

The set \mathbb{C} of complex numbers is a field.

Analytic functions

Suppose $D \subset \mathbb{C}$ is a domain and consider a function $f: D \rightarrow \mathbb{C}$.
The function f is called complex differentiable at a point $z_{0} \in D$ if

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \quad \text { exists. }
$$

The limit value is the derivative $f^{\prime}\left(z_{0}\right)$.
The function f is called analytic at a point $z_{0} \in D$ if it is complex differentiable in a neighborhood of $z_{0} . f$ is called analytic in D if it is complex differentiable at every point of D.

To a complex function $f: D \rightarrow \mathbb{C}$ we associate a real vector-function $(u, v): D \rightarrow \mathbb{R}^{2}$ defined by $f(x+i y)=u(x, y)+i v(x, y)$.

Theorem The function f is analytic if and only if u, v have continuous partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ and, moreover, the Cauchy-Riemann equations are satisfied:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

Sketch of the proof: f is complex differentiable at z_{0} if

$$
f(z)=f\left(z_{0}\right)+p \cdot\left(z-z_{0}\right)+\alpha(z)
$$

where $p \in \mathbb{C}\left(p=f^{\prime}\left(z_{0}\right)\right)$ and $|\alpha(z)| /\left|z-z_{0}\right| \rightarrow 0$ as $z \rightarrow z_{0}$.
(u, v) is differentiable at $\left(x_{0}, y_{0}\right)$ if
$\binom{u(x, y)}{v(x, y)}=\binom{u\left(x_{0}, y_{0}\right)}{v\left(x_{0}, y_{0}\right)}+A\binom{x-x_{0}}{y-y_{0}}+\binom{\beta(x, y)}{\gamma(x, y)}$,
where A is a 2×2 matrix, $A=\left(\begin{array}{cc}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right)$, and
$(\beta(x, y), \gamma(x, y))$ is small when compared with $\left(x-x_{0}, y-y_{0}\right)$.

When $A=\left(\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right)$ is the matrix of multiplication?
Let $p=q+i r$. Then $p \cdot 1=q+i r, p \cdot i=-r+i q$.
It follows that $A=\left(\begin{array}{cc}q & -r \\ r & q\end{array}\right)$.

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

The CR equations imply that

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y}, \quad \frac{\partial^{2} u}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial y \partial x}
$$

It follows that $\nabla^{2} u=0$. Similarly, $\nabla^{2} v=0$.
Real and imaginary components of a complex analytic function are harmonic.

