Math 412-501

Theory of Partial Differential Equations
Lecture 2-3: Separation of variables
for the one-dimensional wave equation. Laplace's equation in a rectangle.

Separation of variables: wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Suppose $u(x, t)=\phi(x) G(t)$. Then

$$
\frac{\partial^{2} u}{\partial t^{2}}=\phi(x) \frac{d^{2} G}{d t^{2}}, \quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{d^{2} \phi}{d x^{2}} G(t)
$$

Hence

$$
\phi(x) \frac{d^{2} G}{d t^{2}}=c^{2} \frac{d^{2} \phi}{d x^{2}} G(t)
$$

Divide both sides by $c^{2} \cdot \phi(x) \cdot G(t)=c^{2} \cdot u(x, t)$:

$$
\frac{1}{c^{2} G} \cdot \frac{d^{2} G}{d t^{2}}=\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}}
$$

It follows that

$$
\frac{1}{c^{2} G} \cdot \frac{d^{2} G}{d t^{2}}=\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}}=-\lambda=\text { const. }
$$

The variables have been separated:

$$
\begin{aligned}
\frac{d^{2} \phi}{d x^{2}} & =-\lambda \phi \\
\frac{d^{2} G}{d t^{2}} & =-\lambda c^{2} G
\end{aligned}
$$

Proposition Suppose ϕ and G are solutions of the above ODEs for the same value of λ. Then $u(x, t)=\phi(x) G(t)$ is a solution of the wave equation.

Example. $u(x, t)=\cos c t \cdot \sin x$. (standing wave)

Finite string with fixed ends

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L \\
u(0, t)=u(L, t)=0
\end{gathered}
$$

We are looking for solutions $u(x, t)=\phi(x) G(t)$.
PDE holds if

$$
\begin{gathered}
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi, \\
\frac{d^{2} G}{d t^{2}}=-\lambda c^{2} G
\end{gathered}
$$

for the same constant λ.
Boundary conditions hold if

$$
\phi(0)=\phi(L)=0 .
$$

Eigenvalue problem: $\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(L)=0$.
Eigenvalues: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=1,2, \ldots$
Eigenfunctions: $\phi_{n}(x)=\sin \frac{n \pi x}{L}$.
Dependence on time:

$$
\begin{gathered}
G^{\prime \prime}=-\lambda c^{2} G \\
\Longrightarrow G(t)=C_{1} \cos (c \sqrt{\lambda} t)+C_{2} \sin (c \sqrt{\lambda} t)
\end{gathered}
$$

Solution of the heat equation: $u(x, t)=\phi(x) G(t)$.

Theorem For $n=1,2, \ldots$ and arbitrary constants
C_{1}, C_{2}, the function

$$
\begin{aligned}
u(x, t) & =\phi_{n}(x) \cdot\left(C_{1} \cos \left(c \sqrt{\lambda_{n}} t\right)+C_{2} \sin \left(c \sqrt{\lambda_{n}} t\right)\right) \\
= & \sin \frac{n \pi x}{L} \cdot\left(C_{1} \cos \frac{n \pi c t}{L}+C_{2} \sin \frac{n \pi c t}{L}\right)
\end{aligned}
$$

is a solution of the following boundary value problem for the wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, t)=u(L, t)=0
$$

Normal modes (a.k.a. harmonics)

Natural frequencies: $n c /(2 L), n=1,2, \ldots$

Initial-boundary value problem

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L
$$

$u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad u(0, t)=u(L, t)=0$.
Principle of superposition: the solution is a superposition of normal modes.

$$
u(x, t)=\sum_{n=1}^{\infty} \sin \frac{n \pi x}{L}\left(C_{n} \cos \frac{n \pi c t}{L}+D_{n} \sin \frac{n \pi c t}{L}\right)
$$

Initial conditions are satisfied if

$$
\begin{gathered}
f(x)=\sum_{n=1}^{\infty} C_{n} \sin \frac{n \pi x}{L} \\
g(x)=\sum_{n=1}^{\infty} D_{n} \frac{n \pi c}{L} \sin \frac{n \pi x}{L}
\end{gathered}
$$

How do we solve the initial-boundary value problem?

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L
$$

$$
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad u(0, t)=u(L, t)=0 .
$$

- Expand f and g into Fourier sine series:

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi x}{L} \\
& g(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} .
\end{aligned}
$$

- Write the solution:

$$
u(x, t)=\sum_{n=1}^{\infty} \sin \frac{n \pi x}{L}\left(C_{n} \cos \frac{n \pi c t}{L}+D_{n} \sin \frac{n \pi c t}{L}\right)
$$

where $C_{n}=a_{n}, D_{n}=\frac{L}{n \pi c} b_{n}$.

The solution

$$
u(x, t)=\sum_{n=1}^{\infty} \sin \frac{n \pi x}{L}\left(C_{n} \cos \frac{n \pi c t}{L}+D_{n} \sin \frac{n \pi c t}{L}\right)
$$

is defined in the whole plane.
It satisfies initial conditions
$u(x, 0)=F(x), \quad \frac{\partial u}{\partial t}(x, 0)=G(x),-\infty<x<\infty$,
where F and G are the sums of Fourier sine series of f and g, respectively.
F and G are odd $2 L$-periodic extensions of f and g.
F and G are odd with respect to 0 and L.

Separation of variables: Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Suppose $u(x, y)=\phi(x) h(y)$. Then

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{d^{2} \phi}{d x^{2}} h(y), \quad \frac{\partial^{2} u}{\partial y^{2}}=\phi(x) \frac{d^{2} h}{d y^{2}} .
$$

Hence

$$
\frac{d^{2} \phi}{d x^{2}} h(y)+\phi(x) \frac{d^{2} h}{d y^{2}}=0
$$

Divide both sides by $\phi(x) h(y)=u(x, y)$:

$$
\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}}=-\frac{1}{h} \cdot \frac{d^{2} h}{d y^{2}}
$$

It follows that

$$
\frac{1}{\phi} \cdot \frac{d^{2} \phi}{d x^{2}}=-\frac{1}{h} \cdot \frac{d^{2} h}{d y^{2}}=-\lambda=\text { const. }
$$

The variables have been separated:

$$
\begin{aligned}
\frac{d^{2} \phi}{d x^{2}} & =-\lambda \phi \\
\frac{d^{2} h}{d y^{2}} & =\lambda h
\end{aligned}
$$

Proposition Suppose ϕ and h are solutions of the above ODEs for the same value of λ. Then $u(x, t)=\phi(x) h(y)$ is a solution of Laplace's equation.

Example. $\quad u(x, y)=e^{y} \sin x$.

Laplace's equation inside a rectangle

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad(0<x<L, 0<y<H)
$$

Boundary conditions:

$$
\begin{aligned}
u(0, y) & =g_{1}(y) \\
u(L, y) & =g_{2}(y) \\
u(x, 0) & =f_{1}(x) \\
u(x, H) & =f_{2}(x)
\end{aligned}
$$

Principle of superposition:

$$
u=u_{1}+u_{2}+u_{3}+u_{4}
$$

where

$$
\nabla^{2} u_{1}=\nabla^{2} u_{2}=\nabla^{2} u_{3}=\nabla^{2} u_{4}=0
$$

$u_{1}(x, 0)=f_{1}(x), \quad u_{1}(0, y)=u_{1}(L, y)=u_{1}(x, H)=0 ;$ $u_{2}(L, y)=g_{2}(y), \quad u_{2}(0, y)=u_{2}(x, 0)=u_{2}(x, H)=0$; $u_{3}(x, H)=f_{2}(x), \quad u_{3}(0, y)=u_{3}(L, y)=u_{3}(x, 0)=0 ;$
$u_{4}(0, y)=g_{1}(y), \quad u_{4}(L, y)=u_{4}(x, 0)=u_{4}(x, H)=0$.

Reduced boundary value problem

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad(0<x<L, 0<y<H)
$$

Boundary conditions:

$$
\begin{aligned}
u(0, y) & =0 \\
u(L, y) & =0 \\
u(x, 0) & =f_{1}(x) \\
u(x, H) & =0
\end{aligned}
$$

Separation of variables

We are looking for a solution $u(x, y)=\phi(x) h(y)$.
PDE holds if

$$
\begin{gathered}
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi \\
\frac{d^{2} h}{d y^{2}}=\lambda h
\end{gathered}
$$

for the same constant λ.
Boundary conditions $u(0, y)=u(L, y)=0$ hold if

$$
\phi(0)=\phi(L)=0 .
$$

Boundary condition $u(x, H)=0$ holds if

$$
h(H)=0 .
$$

Eigenvalue problem: $\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(L)=0$.
Eigenvalues: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=1,2, \ldots$
Eigenfunctions: $\phi_{n}(x)=\sin \frac{n \pi x}{L}$.
Dependence on y :

$$
\begin{gathered}
h^{\prime \prime}=\lambda h, \quad h(H)=0 \\
\Longrightarrow \\
h(y)=C_{0} \sinh \sqrt{\lambda}(y-H)
\end{gathered}
$$

Solution of Laplace's equation:

$$
u(x, y)=\sin \frac{n \pi x}{L} \sinh \frac{n \pi(y-H)}{L}, \quad n=1,2, \ldots
$$

We are looking for the solution of the reduced boundary value problem as a superposition of solutions with separated variables.

$$
u(x, y)=\sum_{n=1}^{\infty} C_{n} \sin \frac{n \pi x}{L} \sinh \frac{n \pi(y-H)}{L}
$$

Boundary condition $u(x, 0)=f_{1}(x)$ is satisfied if

$$
f(x)=-\sum_{n=1}^{\infty} C_{n} \sinh \frac{n \pi H}{L} \sin \frac{n \pi x}{L}
$$

How do we solve the reduced boundary value problem?

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad(0<x<L, 0<y<H) \\
u(x, 0)=f_{1}(x), \quad u(x, H)=u(0, y)=u(L, y)=0
\end{gathered}
$$

- Expand f_{1} into the Fourier sine series:

$$
f_{1}(x)=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi x}{L} .
$$

- Write the solution:

$$
\begin{aligned}
& \quad u(x, y)=\sum_{n=1}^{\infty} C_{n} \sin \frac{n \pi x}{L} \sinh \frac{n \pi(y-H)}{L}, \\
& \text { where } C_{n}=-\frac{a_{n}}{\sinh \frac{n \pi H}{L}} .
\end{aligned}
$$

