
Math 412-501

Theory of Partial Differential Equations

Lecture 2-3: Separation of variables
for the one-dimensional wave equation.

Laplace’s equation in a rectangle.



Separation of variables: wave equation

∂2u

∂t2
= c2 ∂2u

∂x2

Suppose u(x , t) = φ(x)G (t). Then

∂2u

∂t2
= φ(x)

d2G

dt2
,

∂2u

∂x2
=

d2φ

dx2
G (t).

Hence

φ(x)
d2G

dt2
= c2 d2φ

dx2
G (t).

Divide both sides by c2 · φ(x) · G (t) = c2 · u(x , t):

1

c2G
· d2G

dt2
=

1

φ
· d2φ

dx2
.



It follows that

1

c2G
· d2G

dt2
=

1

φ
· d2φ

dx2
= −λ = const.

The variables have been separated:

d2φ

dx2
= −λφ,

d2G

dt2
= −λc2G .

Proposition Suppose φ and G are solutions of the
above ODEs for the same value of λ. Then
u(x , t) = φ(x)G (t) is a solution of the wave
equation.

Example. u(x , t) = cos ct · sin x . (standing wave)



Finite string with fixed ends

∂2u

∂t2
= c2 ∂2u

∂x2
, 0 ≤ x ≤ L,

u(0, t) = u(L, t) = 0.

We are looking for solutions u(x , t) = φ(x)G (t).

PDE holds if
d2φ

dx2 = −λφ,

d2G
dt2 = −λc2G

for the same constant λ.

Boundary conditions hold if
φ(0) = φ(L) = 0.



Eigenvalue problem: φ′′ = −λφ, φ(0) = φ(L) = 0.

Eigenvalues: λn = (nπ
L

)2, n = 1, 2, . . .

Eigenfunctions: φn(x) = sin nπx
L

.

Dependence on time:

G ′′ = −λc2G

=⇒ G (t) = C1 cos(c
√

λt) + C2 sin(c
√

λt)

Solution of the heat equation: u(x , t) = φ(x)G (t).



Theorem For n = 1, 2, . . . and arbitrary constants
C1, C2, the function

u(x , t) = φn(x) ·
(

C1 cos(c
√

λnt) + C2 sin(c
√

λnt)
)

= sin
nπx

L
·
(

C1 cos
nπct

L
+ C2 sin

nπct

L

)

is a solution of the following boundary value
problem for the wave equation:

∂2u

∂t2
= c2 ∂2u

∂x2
, u(0, t) = u(L, t) = 0.



Normal modes (a.k.a. harmonics)

Natural frequencies: nc/(2L), n = 1, 2, . . .



Initial-boundary value problem

∂2u

∂t2
= c2 ∂2u

∂x2
, 0 ≤ x ≤ L,

u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x), u(0, t) = u(L, t) = 0.

Principle of superposition: the solution is a
superposition of normal modes.

u(x , t) =
∑∞

n=1
sin nπx

L

(

Cn cos nπct
L

+ Dn sin nπct
L

)

Initial conditions are satisfied if

f (x) =
∑∞

n=1
Cn sin nπx

L

g(x) =
∑∞

n=1
Dn

nπc
L

sin nπx
L



How do we solve the initial-boundary value problem?

∂2u

∂t2
= c2 ∂2u

∂x2
, 0 ≤ x ≤ L,

u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x), u(0, t) = u(L, t) = 0.

• Expand f and g into Fourier sine series:

f (x) =
∑∞

n=1
an sin nπx

L
,

g(x) =
∑∞

n=1
bn sin nπx

L
.

• Write the solution:

u(x , t) =
∑∞

n=1
sin nπx

L

(

Cn cos nπct
L

+ Dn sin nπct
L

)

,

where Cn = an, Dn = L
nπc

bn.



The solution

u(x , t) =
∑∞

n=1
sin nπx

L

(

Cn cos nπct
L

+ Dn sin nπct
L

)

is defined in the whole plane.
It satisfies initial conditions

u(x , 0) = F (x),
∂u

∂t
(x , 0) = G (x), −∞ < x < ∞,

where F and G are the sums of Fourier sine series
of f and g , respectively.

F and G are odd 2L-periodic extensions of f and g .
F and G are odd with respect to 0 and L.



Separation of variables: Laplace’s equation

∂2u

∂x2
+

∂2u

∂y 2
= 0

Suppose u(x , y) = φ(x)h(y). Then

∂2u

∂x2
=

d2φ

dx2
h(y),

∂2u

∂y 2
= φ(x)

d2h

dy 2
.

Hence
d2φ

dx2
h(y) + φ(x)

d2h

dy 2
= 0.

Divide both sides by φ(x)h(y) = u(x , y):

1

φ
· d2φ

dx2
= −1

h
· d2h

dy 2
.



It follows that

1

φ
· d2φ

dx2
= −1

h
· d2h

dy 2
= −λ = const.

The variables have been separated:

d2φ

dx2
= −λφ,

d2h

dy 2
= λh.

Proposition Suppose φ and h are solutions of the
above ODEs for the same value of λ. Then
u(x , t) = φ(x)h(y) is a solution of Laplace’s
equation.

Example. u(x , y) = ey sin x .



Laplace’s equation inside a rectangle

∂2u

∂x2
+

∂2u

∂y 2
= 0 (0 < x < L, 0 < y < H)

Boundary conditions:

u(0, y) = g1(y)

u(L, y) = g2(y)

u(x , 0) = f1(x)

u(x , H) = f2(x)





Principle of superposition:

u = u1 + u2 + u3 + u4,
where

∇2u1 = ∇2u2 = ∇2u3 = ∇2u4 = 0,

u1(x , 0) = f1(x), u1(0, y) = u1(L, y) = u1(x , H) = 0;

u2(L, y) = g2(y), u2(0, y) = u2(x , 0) = u2(x , H) = 0;

u3(x , H) = f2(x), u3(0, y) = u3(L, y) = u3(x , 0) = 0;

u4(0, y) = g1(y), u4(L, y) = u4(x , 0) = u4(x , H) = 0.





Reduced boundary value problem

∂2u

∂x2
+

∂2u

∂y 2
= 0 (0 < x < L, 0 < y < H)

Boundary conditions:

u(0, y) = 0

u(L, y) = 0

u(x , 0) = f1(x)

u(x , H) = 0



Separation of variables

We are looking for a solution u(x , y) = φ(x)h(y).

PDE holds if
d2φ

dx2 = −λφ,

d2h
dy2 = λh

for the same constant λ.

Boundary conditions u(0, y) = u(L, y) = 0 hold if

φ(0) = φ(L) = 0.

Boundary condition u(x , H) = 0 holds if

h(H) = 0.



Eigenvalue problem: φ′′ = −λφ, φ(0) = φ(L) = 0.

Eigenvalues: λn = (nπ
L

)2, n = 1, 2, . . .

Eigenfunctions: φn(x) = sin nπx
L

.

Dependence on y :

h′′ = λh, h(H) = 0.

=⇒ h(y) = C0 sinh
√

λ(y − H)

Solution of Laplace’s equation:

u(x , y) = sin nπx
L

sinh nπ(y−H)
L

, n = 1, 2, . . .



We are looking for the solution of the reduced
boundary value problem as a superposition of
solutions with separated variables.

u(x , y) =
∑∞

n=1
Cn sin nπx

L
sinh nπ(y−H)

L

Boundary condition u(x , 0) = f1(x) is satisfied if

f (x) = −
∑∞

n=1
Cn sinh nπH

L
sin nπx

L



How do we solve the reduced boundary value problem?

∂2u

∂x2
+

∂2u

∂y 2
= 0 (0 < x < L, 0 < y < H),

u(x , 0) = f1(x), u(x , H) = u(0, y) = u(L, y) = 0.

• Expand f1 into the Fourier sine series:

f1(x) =
∑∞

n=1
an sin nπx

L
.

• Write the solution:

u(x , y) =
∑∞

n=1
Cn sin nπx

L
sinh nπ(y−H)

L
,

where Cn = − an

sinh nπH
L

.


