Math 412-501
 Theory of Partial Differential Equations

Lecture 2-7:

Sturm-Liouville eigenvalue problems.

Sturm-Liouville differential equation:

$$
\frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b)
$$

where $p=p(x), q=q(x), \sigma=\sigma(x)$ are known functions on $[a, b]$ and λ is an unknown constant.

The Sturm-Liouville equation is a linear homogeneous ODE of the second order.

Sturm-Liouville eigenvalue problem $=$
= Sturm-Liouville differential equation +

+ linear homogeneous boundary conditions

J. C. F. Sturm
(1803-1855)

J. Liouville
(1809-1882)

The Sturm-Liouville equation usually arises after separation of variables in a linear homogeneous PDE of the second order.

Examples.

- $\phi^{\prime \prime}+\lambda \phi=0$ (heat, wave, Laplace's equations)
- $r^{2} \frac{d^{2} h}{d r^{2}}+r \frac{d h}{d r}=\lambda h$
(Laplace's equation in polar coordinates) standard notation: $x^{2} \phi^{\prime \prime}+x \phi^{\prime}-\lambda \phi=0$ canonical form: $\left(x \phi^{\prime}\right)^{\prime}-\lambda x^{-1} \phi=0$

Heat flow in a nonuniform rod:

$$
\begin{gathered}
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q \\
K_{0}=K_{0}(x), c=c(x), \rho=\rho(x), Q=Q(u, x, t)
\end{gathered}
$$

The equation is linear homogeneous if $Q=\alpha(x, t) u$.
We assume that $\alpha=\alpha(x)$.

$$
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+\alpha u
$$

Separation of variables: $u(x, t)=\phi(x) G(t)$.
Substitute this into the heat equation:

$$
c \rho \phi \frac{d G}{d t}=\frac{d}{d x}\left(K_{0} \frac{d \phi}{d x}\right) G+\alpha \phi G .
$$

Divide both sides by $c(x) \rho(x) \phi(x) G(t)=c \rho u$:

$$
\frac{1}{G} \frac{d G}{d t}=\frac{1}{c \rho \phi} \frac{d}{d x}\left(K_{0} \frac{d \phi}{d x}\right)+\frac{\alpha}{c \rho}=-\lambda=\text { const. }
$$

The variables have been separated:

$$
\begin{gathered}
\frac{d G}{d t}+\lambda G=0 \\
\frac{d}{d x}\left(K_{0} \frac{d \phi}{d x}\right)+\alpha \phi+\lambda c \rho \phi=0
\end{gathered}
$$

Sturm-Liouville differential equation:

$$
\frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b)
$$

Examples of boundary conditions:

- $\phi(a)=\phi(b)=0$ (Dirichlet conditions)
- $\phi^{\prime}(a)=\phi^{\prime}(b)=0$ (von Neumann conditions)
- $\phi^{\prime}(a)=2 \phi(a), \phi^{\prime}(b)=-3 \phi(b)$ (Robin
conditions)
- $\phi(a)=0, \phi^{\prime}(b)=0$ (mixed conditions)
- $\phi(a)=\phi(b), \phi^{\prime}(a)=\phi^{\prime}(b)$ (periodic
conditions)
- $|\phi(a)|<\infty, \phi(b)=0$ (singular conditions)

$$
\frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b)
$$

The equation is regular if p, q, σ are real and continuous on $[a, b]$, and $p, \sigma>0$ on $[a, b]$.
The Sturm-Liouville eigenvalue problem is regular if the equation is regular and boundary conditions are of the form

$$
\begin{aligned}
& \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 \\
& \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0
\end{aligned}
$$

where $\beta_{i} \in \mathbb{R},\left|\beta_{1}\right|+\left|\beta_{2}\right| \neq 0,\left|\beta_{3}\right|+\left|\beta_{4}\right| \neq 0$.
This includes Dirichlet, Neumann, and Robin conditions but excludes periodic and singular ones.

Regular Sturm-Liouville eigenvalue problem:

$$
\begin{aligned}
& \frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b) \\
& \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 \\
& \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0
\end{aligned}
$$

Eigenfunction: nonzero solution ϕ of the boundary value problem.
Eigenvalue: corresponding value of λ.
Eigenvalues and eigenfunctions of a regular SturmLiouville eigenvalue problem have six important properties.

Property 1. All eigenvalues are real.

Property 2. All eigenvalues can be arranged in the ascending order

$$
\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}<\lambda_{n+1}<\ldots
$$

so that $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
This means that:

- there are infinitely many eigenvalues;
- there is a smallest eigenvalue;
- on any finite interval, there are only finitely many eigenvalues.
Remark. It is possible that $\lambda_{1}<0$.

Property 3. Given an eigenvalue λ_{n}, the corresponding eigenfunction ϕ_{n} is unique up to a multiplicative constant. The function ϕ_{n} has exactly $n-1$ zeros in (a, b).
We say that λ_{n} is a simple eigenvalue.
Property 4. Eigenfunctions belonging to different eigenvalues satisfy an integral identity:

$$
\int_{a}^{b} \phi_{n}(x) \phi_{m}(x) \sigma(x) d x=0 \quad \text { if } \quad \lambda_{n} \neq \lambda_{m}
$$

We say that ϕ_{n} and ϕ_{m} are orthogonal relative to the weight function σ.

Property 5. Any eigenvalue λ can be related to its eigenfunction ϕ as follows:

$$
\lambda=\frac{-\left.p \phi \phi^{\prime}\right|_{a} ^{b}+\int_{a}^{b}\left(p\left(\phi^{\prime}\right)^{2}-q \phi^{2}\right) d x}{\int_{a}^{b} \phi^{2} \sigma d x} .
$$

The right-hand side is called the Rayleigh quotient.

Property 6. Any piecewise continuous function $f:[a, b] \rightarrow \mathbb{R}$ is assigned a series

$$
f(x) \sim \sum_{n=1}^{\infty} c_{n} \phi_{n}(x)
$$

where

$$
c_{n}=\frac{\int_{a}^{b} f(x) \phi_{n}(x) \sigma(x) d x}{\int_{a}^{b} \phi_{n}^{2}(x) \sigma(x) d x}
$$

If f is piecewise smooth then the series converges for any $a<x<b$. The sum is equal to $f(x)$ if f is continuous at x. Otherwise the series converges to $\frac{1}{2}(f(x+)+f(x-))$.
We say that the set of eigenfunctions ϕ_{n} is complete.

A regular Sturm-Liouville eigenvalue problem:

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \phi(0)=\phi(L)=0 .
$$

$(p=\sigma=1, q=0,[a, b]=[0, L])$
Eigenvalues: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=1,2, \ldots$
Eigenfunctions: $\phi_{n}(x)=\sin \frac{n \pi x}{L}$.
The zeros of ϕ_{n} divide the interval $[0, L]$ into n equal parts.

Property 3a. Suppose $x_{1}<x_{2}<\ldots<x_{n-1}$ are zeros of the eigenfunction ϕ_{n} in (a, b). Then ϕ_{n+1} has exactly one zero in each of the following intervals: $\left(a, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{n-2}, x_{n-1}\right)$, $\left(x_{n-1}, b\right)$.

Eigenfunctions ϕ_{n}

Orthogonality: $\int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=0, \quad n \neq m$.
Rayleigh quotient: $\lambda=\frac{\int_{0}^{L}\left|\phi^{\prime}(x)\right|^{2} d x}{\int_{0}^{L}|\phi(x)|^{2} d x}$.
Fourier sine series: $f \sim \sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{L}$,

$$
\text { where } \quad c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Note that $\int_{0}^{L}\left(\sin \frac{n \pi x}{L}\right)^{2} d x=\frac{L}{2}$.

