Math 412-501 Theory of Partial Differential Equations Lecture 2-8: Sturm-Liouville eigenvalue problems (continued).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sturm-Liouville differential equation:

$$rac{d}{dx} \Big(p rac{d\phi}{dx} \Big) + q\phi + \lambda \sigma \phi = 0 \quad (a < x < b),$$

where p = p(x), q = q(x), $\sigma = \sigma(x)$ are known functions on [a, b] and λ is an unknown constant.

Sturm-Liouville eigenvalue problem =

- = Sturm-Liouville differential equation +
- + linear homogeneous boundary conditions

Eigenfunction: nonzero solution ϕ of the boundary value problem.

Eigenvalue: corresponding value of λ .

$$\frac{d}{dx}\left(p\frac{d\phi}{dx}\right) + q\phi + \lambda\sigma\phi = 0 \quad (a < x < b).$$

The equation is **regular** if p, q, σ are real and continuous on [a, b], and $p, \sigma > 0$ on [a, b].

The Sturm-Liouville eigenvalue problem is **regular** if the equation is regular and boundary conditions are of the form

$$egin{array}{l} eta_1\phi(a)+eta_2\phi'(a)=0,\ eta_3\phi(b)+eta_4\phi'(b)=0, \end{array}$$

where $\beta_i \in \mathbb{R}$, $|\beta_1| + |\beta_2| \neq 0$, $|\beta_3| + |\beta_4| \neq 0$.

6 properties of a regular Sturm-Liouville problem

- Eigenvalues are real.
- Eigenvalues form an increasing sequence.
- *n*-th eigenfunction has n 1 zeros in (a, b).
- Eigenfunctions are orthogonal with weight σ .
- Eigenfunctions and eigenvalues are related through the Rayleigh quotient.
- Piecewise smooth functions can be expanded into generalized Fourier series of eigenfunctions.

Heat flow in a nonuniform rod without sources

Initial-boundary value problem:

$$c\rho \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(K_0 \frac{\partial u}{\partial x} \right) \quad (0 < x < L),$$
$$\frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(L, t) = 0, \text{ (insulated ends)}$$
$$u(x, 0) = f(x) \quad (0 < x < L).$$

We assume that $K_0(x)$, c(x), $\rho(x)$ are positive and continuous on [0, L]. Also, we assume that f(x) is piecewise smooth.

Separation of variables: $u(x, t) = \phi(x)G(t)$. Substitute this into the heat equation:

$$c\rho\phi\frac{dG}{dt}=rac{d}{dx}\Big(K_0rac{d\phi}{dx}\Big)G.$$

Divide both sides by $c(x)\rho(x)\phi(x)G(t) = c\rho u$:

$$rac{1}{G}rac{dG}{dt} = rac{1}{c
ho\phi}rac{d}{dx}\Big(K_0rac{d\phi}{dx}\Big) = -\lambda = ext{const.}$$

The variables have been separated:

$$rac{dG}{dt} + \lambda G = 0, \qquad rac{d}{dx} \Big(K_0 rac{d\phi}{dx} \Big) + \lambda c
ho \phi = 0.$$

Boundary conditions $\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(L,t) = 0$ hold provided $\phi'(0) = \phi'(L) = 0$.

Eigenvalue problem:

$$\frac{d}{dx}\left(K_0\frac{d\phi}{dx}\right) + \lambda c\rho\phi = 0, \quad \phi'(0) = \phi'(L) = 0.$$

This is a regular Sturm-Liouville eigenvalue problem $(p = K_0, q = 0, \sigma = c\rho, [a, b] = [0, L]).$

There are infinitely many eigenvalues:

$$\lambda_1 < \lambda_2 < \ldots < \lambda_n < \lambda_{n+1} < \ldots$$

The corresponding eigenfunctions ϕ_n are unique up to multiplicative constants.

Dependence on *t*:

$$G'(t) = -\lambda G(t) \implies G(t) = C_0 e^{-\lambda t}$$

Solutions of the boundary value problem:

$$u(x,t) = e^{-\lambda_n t} \phi_n(x), \quad n = 1, 2, \ldots$$

The general solution of the boundary value problem is a superposition of solutions with separated variables:

$$u(x,t)=\sum_{n=1}^{\infty}C_{n}e^{-\lambda_{n}t}\phi_{n}(x).$$

Initial condition u(x,0) = f(x) is satisfied when

$$f(x)=\sum_{n=1}^{\infty}C_n\phi_n(x).$$

Hence C_n are coefficients of the generalized Fourier series for f:

$$C_n = \frac{\int_0^L f(x)\phi_n(x)c(x)\rho(x)\,dx}{\int_0^L \phi_n^2(x)c(x)\rho(x)\,dx}.$$

Solution:
$$u(x, t) = \sum_{n=1}^{\infty} C_n e^{-\lambda_n t} \phi_n(x).$$

In general, we do not know λ_n and ϕ_n . Nevertheless, we can determine $\lim_{t\to+\infty} u(x, t)$. We need to know which λ_n is > 0, = 0, < 0.

$$rac{d}{dx}\Big(K_0rac{d\phi}{dx}\Big)+\lambda c
ho\phi=0, \hspace{0.5cm} \phi'(0)=\phi'(L)=0.$$

Rayleigh quotient:

$$\lambda = \frac{-\kappa_0 \phi \phi' \Big|_0^L + \int_0^L \kappa_0 (\phi')^2 \, dx}{\int_0^L \phi^2 c \rho \, dx}.$$

Since $\phi'(0) = \phi'(L) = 0$, the nonintegral term vanishes. It follows that either $\lambda > 0$, or else $\lambda = 0$ and $\phi = \text{const.}$ Indeed, $\lambda = 0$ is an eigenvalue. Solution of the heat conduction problem:

$$u(x,t)=\sum_{n=1}^{\infty}C_{n}e^{-\lambda_{n}t}\phi_{n}(x).$$

Now we know that $\lambda_1 = 0$. Furthermore, we can set $\phi_1 = 1$. Besides, $0 < \lambda_2 < \lambda_3 < \dots$

It follows that

$$\lim_{t\to+\infty} u(x,t) = C_1 = \frac{\int_0^L f(x)c(x)\rho(x)\,dx}{\int_0^L c(x)\rho(x)\,dx}.$$

Rayleigh quotient

Consider a regular Sturm-Liouville equation:

$$\frac{d}{dx}\left(p\frac{d\phi}{dx}\right) + q\phi + \lambda\sigma\phi = 0 \quad (a < x < b).$$

Suppose ϕ is a nonzero solution for some λ . Multiply the equation by ϕ and integrate over [a, b]:

$$\int_{a}^{b} \phi \frac{d}{dx} \left(p \frac{d\phi}{dx} \right) dx + \int_{a}^{b} q \phi^{2} dx + \lambda \int_{a}^{b} \sigma \phi^{2} dx = 0.$$

Integrate the first integral by parts:

$$\int_{a}^{b} \phi \frac{d}{dx} \left(p \frac{d\phi}{dx} \right) dx = p \phi \frac{d\phi}{dx} \Big|_{a}^{b} - \int_{a}^{b} p \left(\frac{d\phi}{dx} \right)^{2} dx.$$

It follows that

$$\lambda = \frac{-p\phi\phi' \Big|_a^b + \int_a^b (p(\phi')^2 - q\phi^2) \, dx}{\int_a^b \phi^2 \sigma \, dx}$$

We have used only the facts that p, q, σ are continuous and that $\sigma > 0$.

The Rayleigh quotient can be used for **any** boundary conditions.

Regular Sturm-Liouville equation:

$$\frac{d}{dx}\left(p\frac{d\phi}{dx}\right) + q\phi + \lambda\sigma\phi = 0 \quad (a < x < b).$$

Consider a linear differential operator

$$\mathcal{L}(f) = \frac{d}{dx} \left(p \frac{df}{dx} \right) + qf.$$

Now the equation can be rewritten as

$$\mathcal{L}(\phi) + \lambda \sigma \phi = 0.$$

Lemma Suppose f and g are functions on [a, b] such that $\mathcal{L}(f)$ and $\mathcal{L}(g)$ are well defined. Then

$$g\mathcal{L}(f) - f\mathcal{L}(g) = rac{d}{dx} \Big(p(gf' - fg') \Big)$$

Proof: $\mathcal{L}(f) = (pf')' + qf$, $\mathcal{L}(g) = (pg')' + qg$. Left-hand side:

$$g\mathcal{L}(f) - f\mathcal{L}(g) = g(pf')' + gqf - f(pg')' - fqg$$

= $g(pf')' - f(pg')'$.

Right-hand side:

$$\frac{d}{dx}\left(p(gf'-fg')\right) = \frac{d}{dx}\left(g(pf')-f(pg')\right)$$
$$= g'pf' + g(pf')' - f'pg' - f(pg')'$$
$$= g(pf')' - f(pg')'.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lagrange's identity:

$$g\mathcal{L}(f) - f\mathcal{L}(g) = rac{d}{dx} \Big(p(gf' - fg') \Big)$$

Integrating over [a, b], we obtain **Green's formula**:

$$\int_a^b \left(g\mathcal{L}(f) - f\mathcal{L}(g)\right) dx = p(gf' - fg') \Big|_a^b$$

Claim If *f* and *g* satisfy the same regular boundary conditions, then the right-hand side in Green's formula vanishes.

Proof: We have that $\beta_1 f(a) + \beta_2 f'(a) = 0, \quad \beta_1 g(a) + \beta_2 g'(a) = 0,$ where $\beta_1, \beta_2 \in \mathbb{R}$, $|\beta_1| + |\beta_2| \neq 0$. Vectors (f(a), f'(a)) and (g(a), g'(a)) are orthogonal to vector (β_1, β_2) . Since $(\beta_1, \beta_2) \neq 0$, it follows that (f(a), f'(a)) and (g(a), g'(a)) are parallel. Then their vector product is equal to 0: $(g(a), g'(a)) \times (f(a), f'(a)) = g(a)f'(a) - f(a)g'(a) = 0.$ Similarly, g(b)f'(b) - f(b)g'(b) = 0.

Hence

$$p(gf'-fg')\Big|_a^b=0.$$