
Math 412-501

Theory of Partial Differential Equations

Lecture 2-8:

Sturm-Liouville eigenvalue problems
(continued).



Sturm-Liouville differential equation:

d

dx

(

p
dφ

dx

)

+ qφ + λσφ = 0 (a < x < b),

where p = p(x), q = q(x), σ = σ(x) are known
functions on [a, b] and λ is an unknown constant.

Sturm-Liouville eigenvalue problem =
= Sturm-Liouville differential equation +
+ linear homogeneous boundary conditions

Eigenfunction: nonzero solution φ of the boundary
value problem.

Eigenvalue: corresponding value of λ.



d

dx

(

p
dφ

dx

)

+ qφ + λσφ = 0 (a < x < b).

The equation is regular if p, q, σ are real and
continuous on [a, b], and p, σ > 0 on [a, b].

The Sturm-Liouville eigenvalue problem is regular if
the equation is regular and boundary conditions are
of the form

β1φ(a) + β2φ
′(a) = 0,

β3φ(b) + β4φ
′(b) = 0,

where βi ∈ R, |β1| + |β2| 6= 0, |β3| + |β4| 6= 0.



6 properties of a regular Sturm-Liouville problem

• Eigenvalues are real.

• Eigenvalues form an increasing sequence.

• n-th eigenfunction has n − 1 zeros in (a, b).

• Eigenfunctions are orthogonal with weight σ.

• Eigenfunctions and eigenvalues are related
through the Rayleigh quotient.

• Piecewise smooth functions can be expanded
into generalized Fourier series of eigenfunctions.



Heat flow in a nonuniform rod without sources

Initial-boundary value problem:

cρ
∂u

∂t
=

∂

∂x

(

K0

∂u

∂x

)

(0 < x < L),

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0, (insulated ends)

u(x , 0) = f (x) (0 < x < L).

We assume that K0(x), c(x), ρ(x) are positive and
continuous on [0, L]. Also, we assume that f (x) is
piecewise smooth.



Separation of variables: u(x , t) = φ(x)G (t).
Substitute this into the heat equation:

cρφ
dG

dt
=

d

dx

(

K0

dφ

dx

)

G .

Divide both sides by c(x)ρ(x)φ(x)G (t) = cρu:

1

G

dG

dt
=

1

cρφ

d

dx

(

K0

dφ

dx

)

= −λ = const.

The variables have been separated:

dG

dt
+ λG = 0,

d

dx

(

K0

dφ

dx

)

+ λcρφ = 0.



Boundary conditions
∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0 hold

provided φ′(0) = φ′(L) = 0.

Eigenvalue problem:

d

dx

(

K0

dφ

dx

)

+ λcρφ = 0, φ′(0) = φ′(L) = 0.

This is a regular Sturm-Liouville eigenvalue problem
(p = K0, q = 0, σ = cρ, [a, b] = [0, L]).

There are infinitely many eigenvalues:

λ1 < λ2 < . . . < λn < λn+1 < . . .

The corresponding eigenfunctions φn are unique up
to multiplicative constants.



Dependence on t:

G ′(t) = −λG (t) =⇒ G (t) = C0e
−λt

Solutions of the boundary value problem:

u(x , t) = e−λntφn(x), n = 1, 2, . . .

The general solution of the boundary value problem
is a superposition of solutions with separated
variables:

u(x , t) =
∑∞

n=1
Cne

−λntφn(x).

Initial condition u(x , 0) = f (x) is satisfied when

f (x) =
∑∞

n=1
Cnφn(x).



Hence Cn are coefficients of the generalized Fourier
series for f :

Cn =

∫

L

0

f (x)φn(x)c(x)ρ(x) dx

∫

L

0

φ2
n
(x)c(x)ρ(x) dx

.

Solution: u(x , t) =
∑∞

n=1
Cne

−λntφn(x).

In general, we do not know λn and φn.
Nevertheless, we can determine lim

t→+∞
u(x , t).

We need to know which λn is > 0, = 0, < 0.



d

dx

(

K0

dφ

dx

)

+ λcρφ = 0, φ′(0) = φ′(L) = 0.

Rayleigh quotient:

λ =

−K0φφ′
∣

∣

∣

L

0

+

∫

L

0

K0(φ
′)2 dx

∫

L

0

φ2cρ dx

.

Since φ′(0) = φ′(L) = 0, the nonintegral term
vanishes. It follows that either λ > 0, or else λ = 0
and φ = const. Indeed, λ = 0 is an eigenvalue.



Solution of the heat conduction problem:

u(x , t) =
∑∞

n=1
Cne

−λntφn(x).

Now we know that λ1 = 0. Furthermore, we can set
φ1 = 1. Besides, 0 < λ2 < λ3 < . . .

It follows that

lim
t→+∞

u(x , t) = C1 =

∫

L

0

f (x)c(x)ρ(x) dx

∫

L

0

c(x)ρ(x) dx

.



Rayleigh quotient

Consider a regular Sturm-Liouville equation:

d

dx

(

p
dφ

dx

)

+ qφ + λσφ = 0 (a < x < b).

Suppose φ is a nonzero solution for some λ.
Multiply the equation by φ and integrate over [a, b]:
∫

b

a

φ
d

dx

(

p
dφ

dx

)

dx +

∫

b

a

qφ2 dx + λ

∫

b

a

σφ2 dx = 0.

Integrate the first integral by parts:
∫

b

a

φ
d

dx

(

p
dφ

dx

)

dx = pφ
dφ

dx

∣

∣

∣

b

a

−

∫

b

a

p
(dφ

dx

)2

dx .



It follows that

λ =

−pφφ′
∣

∣

∣

b

a

+

∫

b

a

(

p(φ′)2 − qφ2
)

dx

∫

b

a

φ2σ dx

.

We have used only the facts that p, q, σ are
continuous and that σ > 0.

The Rayleigh quotient can be used for any

boundary conditions.



Regular Sturm-Liouville equation:

d

dx

(

p
dφ

dx

)

+ qφ + λσφ = 0 (a < x < b).

Consider a linear differential operator

L(f ) =
d

dx

(

p
df

dx

)

+ qf .

Now the equation can be rewritten as

L(φ) + λσφ = 0.

Lemma Suppose f and g are functions on [a, b]
such that L(f ) and L(g) are well defined. Then

gL(f ) − f L(g) =
d

dx

(

p(gf ′ − fg ′)
)

.



Proof: L(f ) = (pf ′)′ + qf , L(g) = (pg ′)′ + qg .

Left-hand side:

gL(f ) − f L(g) = g(pf ′)′ + gqf − f (pg ′)′ − fqg

= g(pf ′)′ − f (pg ′)′.

Right-hand side:

d

dx

(

p(gf ′ − fg ′)
)

=
d

dx

(

g(pf ′) − f (pg ′)
)

= g ′pf ′ + g(pf ′)′ − f ′pg ′ − f (pg ′)′

= g(pf ′)′ − f (pg ′)′.



Lagrange’s identity:

gL(f ) − f L(g) =
d

dx

(

p(gf ′ − fg ′)
)

Integrating over [a, b], we obtain Green’s formula:

∫

b

a

(

gL(f ) − f L(g)
)

dx = p(gf ′ − fg ′)
∣

∣

∣

b

a

Claim If f and g satisfy the same regular boundary
conditions, then the right-hand side in Green’s
formula vanishes.



Proof: We have that

β1f (a) + β2f
′(a) = 0, β1g(a) + β2g

′(a) = 0,

where β1, β2 ∈ R, |β1| + |β2| 6= 0.

Vectors (f (a), f ′(a)) and (g(a), g ′(a)) are
orthogonal to vector (β1, β2). Since (β1, β2) 6= 0, it
follows that (f (a), f ′(a)) and (g(a), g ′(a)) are
parallel. Then their vector product is equal to 0:

(g(a), g ′(a)) × (f (a), f ′(a)) = g(a)f ′(a) − f (a)g ′(a) = 0.

Similarly, g(b)f ′(b) − f (b)g ′(b) = 0.
Hence

p(gf ′ − fg ′)
∣

∣

∣

b

a

= 0.


