Math 412-501
 Theory of Partial Differential Equations

Lecture 2-8:

Sturm-Liouville eigenvalue problems
(continued).

Sturm-Liouville differential equation:

$$
\frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b)
$$

where $p=p(x), q=q(x), \sigma=\sigma(x)$ are known functions on $[a, b]$ and λ is an unknown constant.

Sturm-Liouville eigenvalue problem $=$
$=$ Sturm-Liouville differential equation +

+ linear homogeneous boundary conditions
Eigenfunction: nonzero solution ϕ of the boundary value problem.
Eigenvalue: corresponding value of λ.

$$
\frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b)
$$

The equation is regular if p, q, σ are real and continuous on $[a, b]$, and $p, \sigma>0$ on $[a, b]$.

The Sturm-Liouville eigenvalue problem is regular if the equation is regular and boundary conditions are of the form

$$
\begin{aligned}
& \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 \\
& \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0
\end{aligned}
$$

where $\beta_{i} \in \mathbb{R},\left|\beta_{1}\right|+\left|\beta_{2}\right| \neq 0,\left|\beta_{3}\right|+\left|\beta_{4}\right| \neq 0$.

6 properties of a regular Sturm-Liouville problem

- Eigenvalues are real.
- Eigenvalues form an increasing sequence.
- n-th eigenfunction has $n-1$ zeros in (a, b).
- Eigenfunctions are orthogonal with weight σ.
- Eigenfunctions and eigenvalues are related through the Rayleigh quotient.
- Piecewise smooth functions can be expanded into generalized Fourier series of eigenfunctions.

Heat flow in a nonuniform rod without sources

Initial-boundary value problem:

$$
\begin{aligned}
c \rho \frac{\partial u}{\partial t} & =\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right) \quad(0<x<L) \\
\frac{\partial u}{\partial x}(0, t) & =\frac{\partial u}{\partial x}(L, t)=0, \quad \text { (insulated ends) } \\
u(x, 0) & =f(x) \quad(0<x<L) .
\end{aligned}
$$

We assume that $K_{0}(x), c(x), \rho(x)$ are positive and continuous on $[0, L]$. Also, we assume that $f(x)$ is piecewise smooth.

Separation of variables: $u(x, t)=\phi(x) G(t)$.
Substitute this into the heat equation:

$$
c \rho \phi \frac{d G}{d t}=\frac{d}{d x}\left(K_{0} \frac{d \phi}{d x}\right) G .
$$

Divide both sides by $c(x) \rho(x) \phi(x) G(t)=c \rho u$:

$$
\frac{1}{G} \frac{d G}{d t}=\frac{1}{c \rho \phi} \frac{d}{d x}\left(K_{0} \frac{d \phi}{d x}\right)=-\lambda=\text { const. }
$$

The variables have been separated:

$$
\frac{d G}{d t}+\lambda G=0, \quad \frac{d}{d x}\left(K_{0} \frac{d \phi}{d x}\right)+\lambda c \rho \phi=0
$$

Boundary conditions $\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)=0$ hold provided $\phi^{\prime}(0)=\phi^{\prime}(L)=0$.
Eigenvalue problem:

$$
\frac{d}{d x}\left(K_{0} \frac{d \phi}{d x}\right)+\lambda c \rho \phi=0, \quad \phi^{\prime}(0)=\phi^{\prime}(L)=0
$$

This is a regular Sturm-Liouville eigenvalue problem $\left(p=K_{0}, q=0, \sigma=c \rho,[a, b]=[0, L]\right)$.
There are infinitely many eigenvalues:

$$
\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}<\lambda_{n+1}<\ldots
$$

The corresponding eigenfunctions ϕ_{n} are unique up to multiplicative constants.

Dependence on t :

$$
G^{\prime}(t)=-\lambda G(t) \Longrightarrow G(t)=C_{0} e^{-\lambda t}
$$

Solutions of the boundary value problem:

$$
u(x, t)=e^{-\lambda_{n} t} \phi_{n}(x), \quad n=1,2, \ldots
$$

The general solution of the boundary value problem is a superposition of solutions with separated variables:

$$
u(x, t)=\sum_{n=1}^{\infty} C_{n} e^{-\lambda_{n} t} \phi_{n}(x)
$$

Initial condition $u(x, 0)=f(x)$ is satisfied when

$$
f(x)=\sum_{n=1}^{\infty} C_{n} \phi_{n}(x)
$$

Hence C_{n} are coefficients of the generalized Fourier series for f :

$$
C_{n}=\frac{\int_{0}^{L} f(x) \phi_{n}(x) c(x) \rho(x) d x}{\int_{0}^{L} \phi_{n}^{2}(x) c(x) \rho(x) d x}
$$

Solution: $\quad u(x, t)=\sum_{n=1}^{\infty} C_{n} e^{-\lambda_{n} t} \phi_{n}(x)$.
In general, we do not know λ_{n} and ϕ_{n}. Nevertheless, we can determine $\lim _{t \rightarrow+\infty} u(x, t)$. We need to know which λ_{n} is $>0,=0,<0$.

$$
\frac{d}{d x}\left(K_{0} \frac{d \phi}{d x}\right)+\lambda c \rho \phi=0, \quad \phi^{\prime}(0)=\phi^{\prime}(L)=0
$$

Rayleigh quotient:

$$
\lambda=\frac{-\left.K_{0} \phi \phi^{\prime}\right|_{0} ^{L}+\int_{0}^{L} K_{0}\left(\phi^{\prime}\right)^{2} d x}{\int_{0}^{L} \phi^{2} c \rho d x}
$$

Since $\phi^{\prime}(0)=\phi^{\prime}(L)=0$, the nonintegral term vanishes. It follows that either $\lambda>0$, or else $\lambda=0$ and $\phi=$ const. Indeed, $\lambda=0$ is an eigenvalue.

Solution of the heat conduction problem:

$$
u(x, t)=\sum_{n=1}^{\infty} C_{n} e^{-\lambda_{n} t} \phi_{n}(x)
$$

Now we know that $\lambda_{1}=0$. Furthermore, we can set $\phi_{1}=1$. Besides, $0<\lambda_{2}<\lambda_{3}<\ldots$
It follows that

$$
\lim _{t \rightarrow+\infty} u(x, t)=C_{1}=\frac{\int_{0}^{L} f(x) c(x) \rho(x) d x}{\int_{0}^{L} c(x) \rho(x) d x}
$$

Rayleigh quotient

Consider a regular Sturm-Liouville equation:

$$
\frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b)
$$

Suppose ϕ is a nonzero solution for some λ.
Multiply the equation by ϕ and integrate over $[a, b]$:
$\int_{a}^{b} \phi \frac{d}{d x}\left(p \frac{d \phi}{d x}\right) d x+\int_{a}^{b} q \phi^{2} d x+\lambda \int_{a}^{b} \sigma \phi^{2} d x=0$. Integrate the first integral by parts:

$$
\int_{a}^{b} \phi \frac{d}{d x}\left(p \frac{d \phi}{d x}\right) d x=\left.p \phi \frac{d \phi}{d x}\right|_{a} ^{b}-\int_{a}^{b} p\left(\frac{d \phi}{d x}\right)^{2} d x
$$

It follows that

$$
\lambda=\frac{-\left.p \phi \phi^{\prime}\right|_{a} ^{b}+\int_{a}^{b}\left(p\left(\phi^{\prime}\right)^{2}-q \phi^{2}\right) d x}{\int_{a}^{b} \phi^{2} \sigma d x}
$$

We have used only the facts that p, q, σ are continuous and that $\sigma>0$.

The Rayleigh quotient can be used for any boundary conditions.

Regular Sturm-Liouville equation:

$$
\frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b)
$$

Consider a linear differential operator

$$
\mathcal{L}(f)=\frac{d}{d x}\left(p \frac{d f}{d x}\right)+q f
$$

Now the equation can be rewritten as

$$
\mathcal{L}(\phi)+\lambda \sigma \phi=0 .
$$

Lemma Suppose f and g are functions on $[a, b]$ such that $\mathcal{L}(f)$ and $\mathcal{L}(g)$ are well defined. Then

$$
g \mathcal{L}(f)-f \mathcal{L}(g)=\frac{d}{d x}\left(p\left(g f^{\prime}-f g^{\prime}\right)\right)
$$

Proof: $\quad \mathcal{L}(f)=\left(p f^{\prime}\right)^{\prime}+q f, \quad \mathcal{L}(g)=\left(p g^{\prime}\right)^{\prime}+q g$.
Left-hand side:

$$
\begin{gathered}
g \mathcal{L}(f)-f \mathcal{L}(g)=g\left(p f^{\prime}\right)^{\prime}+g q f-f\left(p g^{\prime}\right)^{\prime}-f q g \\
=g\left(p f^{\prime}\right)^{\prime}-f\left(p g^{\prime}\right)^{\prime}
\end{gathered}
$$

Right-hand side:

$$
\begin{gathered}
\frac{d}{d x}\left(p\left(g f^{\prime}-f g^{\prime}\right)\right)=\frac{d}{d x}\left(g\left(p f^{\prime}\right)-f\left(p g^{\prime}\right)\right) \\
=g^{\prime} p f^{\prime}+g\left(p f^{\prime}\right)^{\prime}-f^{\prime} p g^{\prime}-f\left(p g^{\prime}\right)^{\prime} \\
=g\left(p f^{\prime}\right)^{\prime}-f\left(p g^{\prime}\right)^{\prime}
\end{gathered}
$$

Lagrange's identity:

$$
g \mathcal{L}(f)-f \mathcal{L}(g)=\frac{d}{d x}\left(p\left(g f^{\prime}-f g^{\prime}\right)\right)
$$

Integrating over $[a, b]$, we obtain Green's formula:

$$
\int_{a}^{b}(g \mathcal{L}(f)-f \mathcal{L}(g)) d x=\left.p\left(g f^{\prime}-f g^{\prime}\right)\right|_{a} ^{b}
$$

Claim If f and g satisfy the same regular boundary conditions, then the right-hand side in Green's formula vanishes.

Proof: We have that

$$
\beta_{1} f(a)+\beta_{2} f^{\prime}(a)=0, \quad \beta_{1} g(a)+\beta_{2} g^{\prime}(a)=0
$$

where $\beta_{1}, \beta_{2} \in \mathbb{R},\left|\beta_{1}\right|+\left|\beta_{2}\right| \neq 0$.
Vectors $\left(f(a), f^{\prime}(a)\right)$ and $\left(g(a), g^{\prime}(a)\right)$ are orthogonal to vector $\left(\beta_{1}, \beta_{2}\right)$. Since $\left(\beta_{1}, \beta_{2}\right) \neq 0$, it follows that $\left(f(a), f^{\prime}(a)\right)$ and $\left(g(a), g^{\prime}(a)\right)$ are parallel. Then their vector product is equal to 0 :
$\left(g(a), g^{\prime}(a)\right) \times\left(f(a), f^{\prime}(a)\right)=g(a) f^{\prime}(a)-f(a) g^{\prime}(a)=0$.
Similarly, $g(b) f^{\prime}(b)-f(b) g^{\prime}(b)=0$. Hence

$$
\left.p\left(g f^{\prime}-f g^{\prime}\right)\right|_{a} ^{b}=0
$$

