Math 412-501
 Theory of Partial Differential Equations

Lecture 2-9:

Sturm-Liouville eigenvalue problems
(continued).

Regular Sturm-Liouville eigenvalue problem:

$$
\begin{aligned}
& \frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b) \\
& \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 \\
& \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0
\end{aligned}
$$

Here $\beta_{i} \in \mathbb{R},\left|\beta_{1}\right|+\left|\beta_{2}\right| \neq 0,\left|\beta_{3}\right|+\left|\beta_{4}\right| \neq 0$.
Functions p, q, σ are continuous on $[a, b]$,
$p>0$ and $\sigma>0$ on $[a, b]$.

6 properties of a regular Sturm-Liouville problem

- Eigenvalues are real.
- Eigenvalues form an increasing sequence.
- n-th eigenfunction has $n-1$ zeros in (a, b).
- Eigenfunctions are orthogonal with weight σ.
- Eigenfunctions and eigenvalues are related through the Rayleigh quotient.
- Piecewise smooth functions can be expanded into generalized Fourier series of eigenfunctions.

Regular Sturm-Liouville equation:

$$
\frac{d}{d x}\left(p \frac{d \phi}{d x}\right)+q \phi+\lambda \sigma \phi=0 \quad(a<x<b)
$$

Consider a linear differential operator

$$
\mathcal{L}(f)=\frac{d}{d x}\left(p \frac{d f}{d x}\right)+q f
$$

Now the equation can be rewritten as

$$
\mathcal{L}(\phi)+\lambda \sigma \phi=0
$$

Lagrange's identity:

$$
g \mathcal{L}(f)-f \mathcal{L}(g)=\frac{d}{d x}\left(p\left(g f^{\prime}-f g^{\prime}\right)\right)
$$

Integrating over $[a, b]$, we obtain Green's formula:

$$
\int_{a}^{b}(g \mathcal{L}(f)-f \mathcal{L}(g)) d x=\left.p\left(g f^{\prime}-f g^{\prime}\right)\right|_{a} ^{b}
$$

Claim If f and g satisfy the same regular boundary conditions, then the right-hand side in Green's formula vanishes.

Suppose ϕ_{n} and ϕ_{m} are eigenfunctions of the Sturm-Liouville problem corresponding to eigenvalues λ_{n} and λ_{m} :

$$
\mathcal{L}\left(\phi_{n}\right)+\lambda_{n} \sigma \phi_{n}=0, \quad \mathcal{L}\left(\phi_{m}\right)+\lambda_{m} \sigma \phi_{m}=0
$$

Since ϕ_{n} and ϕ_{m} satisfy the same regular boundary conditions, Green's formula implies that

$$
\begin{aligned}
& \int_{a}^{b}\left(\phi_{m} \mathcal{L}\left(\phi_{n}\right)-\phi_{n} \mathcal{L}\left(\phi_{m}\right)\right) d x=0 \\
\Longrightarrow & \int_{a}^{b}\left(\lambda_{m}-\lambda_{n}\right) \phi_{n}(x) \phi_{m}(x) \sigma(x) d x=0
\end{aligned}
$$

If $\lambda_{n} \neq \lambda_{m}$, then $\int_{a}^{b} \phi_{n}(x) \phi_{m}(x) \sigma(x) d x=0$.

Suppose ϕ is a complex-valued eigenfunction corresponding to a complex eigenvalue λ :

$$
\begin{aligned}
& \mathcal{L}(\phi)+\lambda \sigma \phi=0 \\
& \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0, \\
& \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0 .
\end{aligned}
$$

We are going to show that $\lambda \in \mathbb{R}$.
Any complex number $z=x+i y$ is assigned its complex conjugate $\bar{z}=x-i y$.

Let us apply the complex conjugacy to the Sturm-liouville equation and the boundary conditions.

$$
\begin{aligned}
& \overline{\mathcal{L}(\phi)+\lambda \sigma \phi}=0, \\
& \overline{\beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)}=\overline{\beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)}=0 .
\end{aligned}
$$

It is known that $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$ and $\overline{z_{1} \cdot z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$.

$$
\begin{aligned}
& \overline{\mathcal{L}(\phi)}+\bar{\lambda} \cdot \bar{\sigma} \cdot \bar{\phi}=0, \\
& \overline{\beta_{1}} \cdot \overline{\phi(a)}+\overline{\beta_{2}} \cdot \overline{\phi^{\prime}(a)}=\overline{\beta_{3}} \cdot \overline{\phi(b)}+\overline{\beta_{4}} \cdot \overline{\phi^{\prime}(b)}=0 .
\end{aligned}
$$

If z is real then $\bar{z}=z$.

$$
\begin{aligned}
& \overline{\mathcal{L}(\phi)}+\bar{\lambda} \sigma \bar{\phi}=0 \\
& \beta_{1} \cdot \overline{\phi(a)}+\beta_{2} \cdot \overline{\phi^{\prime}(a)}=\beta_{3} \cdot \overline{\phi(b)}+\beta_{4} \cdot \overline{\phi^{\prime}(b)}=0 .
\end{aligned}
$$

Let $\bar{\phi}$ denote the complex conjugate function of ϕ, i.e., $\bar{\phi}(x)=\overline{\phi(x)}$ for $a \leq x \leq b$.

We have that $\phi=f+i g$, where f and g are real-valued functions. Then $\bar{\phi}=f-i g$. Note that

$$
\bar{\phi}^{\prime}=(f-i g)^{\prime}=f^{\prime}-i g^{\prime}=\overline{f^{\prime}+i g^{\prime}}=\overline{\phi^{\prime}} .
$$

It follows that

$$
\begin{aligned}
& \overline{\mathcal{L}(\phi)}=\overline{\left(p \phi^{\prime}\right)^{\prime}+q \phi} \\
&=\overline{\left(p \phi^{\prime}\right)^{\prime}}+q \bar{\phi} \\
&=\left(\overline{p \phi^{\prime}}\right)^{\prime}+q \bar{\phi}=\left(\bar{p}^{\prime}\right)^{\prime}+q \bar{\phi}=\mathcal{L}(\bar{\phi}) .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}(\bar{\phi})+\bar{\lambda} \sigma \bar{\phi}=0 \\
& \beta_{1} \bar{\phi}(a)+\beta_{2} \bar{\phi}^{\prime}(a)=\beta_{3} \bar{\phi}(b)+\beta_{4} \bar{\phi}^{\prime}(b)=0
\end{aligned}
$$

If ϕ is an eigenfunction belonging to an eigenvalue λ, then $\bar{\phi}$ is an eigenfunction belonging to the eigenvalue $\bar{\lambda}$.
Assume that $\bar{\lambda} \neq \lambda$. Then

$$
\int_{a}^{b} \phi(x) \overline{\phi(x)} \sigma(x) d x=0
$$

But $\int_{a}^{b} \phi(x) \overline{\phi(x)} \sigma(x) d x=\int_{a}^{b}|\phi(x)|^{2} \sigma(x) d x>0$.
Thus $\bar{\lambda}=\lambda \Longrightarrow \lambda \in \mathbb{R}$.

Some facts about Euclidean space

Euclidean space \mathbb{R}^{3}.
Let $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right), \mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ be two vectors.
$\mathbf{v} \cdot \mathbf{u}=v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3}$ is the dot product.
\mathbf{v} and \mathbf{u} are orthogonal if $\mathbf{v} \cdot \mathbf{u}=0$.
$|\mathbf{v}|=\sqrt{\mathbf{v} \cdot \mathbf{v}}$.
Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)$ form an orthonormal basis.

$$
\begin{aligned}
\mathbf{v} & =v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+v_{3} \mathbf{e}_{3} \\
& =\left(\mathbf{v} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1}+\left(\mathbf{v} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{2}+\left(\mathbf{v} \cdot \mathbf{e}_{3}\right) \mathbf{e}_{3} .
\end{aligned}
$$

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be orthogonal nonzero vectors. They form a basis in \mathbb{R}^{3} so that for any $\mathbf{u} \in \mathbb{R}^{3}$ we have

$$
\mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3} .
$$

Note that $\mathbf{u} \cdot \mathbf{v}_{n}=c_{n} \mathbf{v}_{n} \cdot \mathbf{v}_{n}$ so that $c_{n}=\frac{\mathbf{u} \cdot \mathbf{v}_{n}}{\mathbf{v}_{n} \cdot \mathbf{v}_{n}}$.
Pythagorean theorem implies that

$$
|\mathbf{u}|^{2}=\left|c_{1} \mathbf{v}_{1}\right|^{2}+\left|c_{2} \mathbf{v}_{2}\right|^{2}+\left|c_{3} \mathbf{v}_{3}\right|^{2} .
$$

Observe that $\left|c_{n} \mathbf{v}_{n}\right|^{2}=\left|c_{n}\right|^{2} \mathbf{v}_{n} \cdot \mathbf{v}_{n}$. Hence

$$
\mathbf{u} \cdot \mathbf{u}=\frac{\left|\mathbf{u} \cdot \mathbf{v}_{1}\right|^{2}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}+\frac{\left|\mathbf{u} \cdot \mathbf{v}_{2}\right|^{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}+\frac{\left|\mathbf{u} \cdot \mathbf{v}_{3}\right|^{2}}{\mathbf{v}_{3} \cdot \mathbf{v}_{3}}
$$

(Parseval's equality)

Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be orthogonal nonzero vectors.
Given a vector $\mathbf{u} \in \mathbb{R}^{3}$, let

$$
\mathbf{u}_{0}=\mathbf{u}-\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}\right), \text { where } c_{n}=\frac{\mathbf{u} \cdot \mathbf{v}_{n}}{\mathbf{v}_{n} \cdot \mathbf{v}_{n}} .
$$

It is easy to check that $\mathbf{u}_{0} \cdot \mathbf{v}_{1}=\mathbf{u}_{0} \cdot \mathbf{v}_{2}=0$ so that $\mathbf{u}_{0} \cdot\left(\mathbf{u}-\mathbf{u}_{0}\right)=0$.
Pythagorean theorem implies that

$$
|\mathbf{u}|^{2}=\left|c_{1} \mathbf{v}_{1}\right|^{2}+\left|c_{2} \mathbf{v}_{2}\right|^{2}+\left|\mathbf{u}_{0}\right|^{2} \geq\left|c_{1} \mathbf{v}_{1}\right|^{2}+\left|c_{2} \mathbf{v}_{2}\right|^{2}
$$

Since $\left|c_{n} \mathbf{v}_{n}\right|^{2}=\left|c_{n}\right|^{2} \mathbf{v}_{n} \cdot \mathbf{v}_{n}$, we get

$$
\mathbf{u} \cdot \mathbf{u} \geq \frac{\left|\mathbf{u} \cdot \mathbf{v}_{1}\right|^{2}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}+\frac{\left|\mathbf{u} \cdot \mathbf{v}_{2}\right|^{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}
$$

(Bessel's inequality)

Suppose A and B are linear operators in \mathbb{R}^{3}.
We say that B is adjoint to A (denoted $B=A^{*}$) if

$$
A \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot B \mathbf{v} \text { for all } \mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}
$$

Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq 3}, B=\left(b_{i j}\right)_{1 \leq i, j \leq 3}$.
Then $A \mathbf{e}_{j}=a_{1 j} \mathbf{e}_{1}+a_{2 j} \mathbf{e}_{2}+a_{3 j} \mathbf{e}_{3}$, hence $a_{i j}=A \mathbf{e}_{j} \cdot \mathbf{e}_{i}$. Similarly, $b_{i j}=B \mathbf{e}_{j} \cdot \mathbf{e}_{i}=\mathbf{e}_{i} \cdot B \mathbf{e}_{j}$. It follows that $a_{i j}=b_{j i}$, i.e., B is the transpose of A.
A is called self-adjoint if $A=A^{*}$.
Self-adjoint operators have only real eigenvalues.
Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}$ are eigenvectors of A belonging to eigenvalues λ_{1}, λ_{2}. Then

$$
\lambda_{1} \mathbf{v}_{1} \cdot \mathbf{v}_{2}=A \mathbf{v}_{1} \cdot \mathbf{v}_{2}=\mathbf{v}_{1} \cdot A \mathbf{v}_{2}=\lambda_{2} \mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

If $\lambda_{1} \neq \lambda_{2}$ then $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$.

From Euclidean space to Hilbert space

Hilbert space is an infinite-dimensional analogue of Euclidean space. One realization is

$$
L_{2}[a, b]=\left\{f: \int_{a}^{b}|f(x)|^{2} d x<\infty\right\} .
$$

Inner product of functions:

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

Since $|f g| \leq \frac{1}{2}\left(|f|^{2}+|g|^{2}\right)$, the inner product is well defined for any $f, g \in L_{2}[a, b]$.
Norm of a function: $\|f\|=\sqrt{\langle f, f\rangle}$.
Convergence: we say that $f_{n} \rightarrow f$ in the mean if $\left\|f-f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Functions $f, g \in L_{2}[a, b]$ are called orthogonal if $\langle f, g\rangle=0$.

Alternative inner product:

$$
\langle f, g\rangle_{w}=\int_{a}^{b} f(x) g(x) w(x) d x
$$

where w is the weight function.
Functions f and g are called orthogonal with weight w if $\langle f, g\rangle_{w}=0$.

A set f_{1}, f_{2}, \ldots of pairwise orthogonal nonzero functions is called complete if it is maximal, i.e., there is no nonzero function g such that $\left\langle g, f_{n}\right\rangle=0$, $n=1,2, \ldots$.

A complete set forms a basis of the Hilbert space, that is, each function $g \in L_{2}[a, b]$ can be expanded into a series

$$
g=\sum_{n=1}^{\infty} c_{n} f_{n}
$$

that converges in the mean.
The expansion is unique: $c_{n}=\frac{\left\langle g, f_{n}\right\rangle}{\left\langle f_{n}, f_{n}\right\rangle}$.

