Math 412-501
Theory of Partial Differential Equations

Lecture 3-10: Applications of Fourier
transforms (continued).



Fourier transform

Given a function h: R — C, the function

h(w) = F[h|(w) = 1 /_OO h(x)e ™ dx, weR

21 J_ o
is called the Fourier transform of h.

Given a function H : R — C, the function

H(x) = FH](x) = /OO Hw)e“ dw, xeR

—0o0

is called the inverse Fourier transform of H.



Initial value problem for the heat equation:

ou 9%u
E_k@ (—OO<X<OO),
u(x,0) = f(x).

Solution: u(x,t) = / G(x, %, t) f(X) dX,

1 (x—%)2

e 4kt |
Varkt

where G(x, X, t) =

The solution is in the integral operator form. The
function G is called the kernel of the operator.
Also, G(x, X, t) is called Green’s function of the
problem.



Wave equation on an infinite interval
Initial value problem:

’u 2 0%u
o2 T ox?

u(x,0) = f(x), %(X, 0) = g(x).

We assume that f, g are smooth and rapidly
decaying as x — oo. We search for a solution with
the same properties.

(—o0 < x < 00),

Apply the Fourier transform (relative to x) to both

sides of the equation:
0%u 0%u
| = )



Let U= Flu]. Thatis,
Uw, t) = Fu(, D](w) = — / u(x, e dx.

:g .

0%u 0*U d%u .

Then }—[81‘2] =52 f{ﬁ} = (iw)?U(w, t).
2

Hence %—tlzj = A2(iw)*U(w, t) = —c*w?U(w, t).

General solution: U(w, t) = acos cwt + bsin cwt

(w#0), where a= a(w), b= b(w).

Apply the Fourier transform to the initial conditions:
Uw,0) = f(w), 5(w,0)=g(w).



sin cwt

Therefore U(w, t) = f(w) cos cwt + g(w)

We know that

/\ sin aw
X[—a,a](w) -

cw

a>0.

Tw
Hence F—! [%} = ZX[-ct,et]» t>0. Then
U(w, t) = L((etF(w) + e (w)) + Zg(w)Ner.en(w)-

By the shift theorem and the convolution theorem,

1 1
u(x,t) = E(f(x + ct) + f(x — ct)) - 58 * X[—ct,ct] (X)-



o

€ X[et](x) = / g(%) X1t (x — %) d

o

Initial value problem:

u 2 d%u

2= 5e (—o0 < x < 00),

u(x,0) = f(x), F(x,0) = g(x).
Solution:

X—+ct

u(x, t) = %(f(x + ct) + f(x — ct)) + 2_1c/ g(x) dx.

x—ct



Sine and cosine transforms of derivatives

Sine transform:  S[f](w) = E/ f(x) sinwx dx
T Jo

Cosine transform: C[f](w) = g/ f(x) cos wx dx
0

™

Assume that f and f’ are continuous and absolutely
integrable on [0,00). Then f(x) — 0 as x — 0.

Hence
2

S[f(w) = — /OOO f'(x) sin wx dx

R /O " F(x)(sinwx) dx

x=0 T

= —f(x)sinwx
m

= —w C[f](w).



Likewise, C[f’](w):g/ f'(x) cos wx dx
T Jo

2

00 2 o0
= —f(x) coswx ‘ — —/ f(x)(coswx)" dx
T x=0 0

s

~2£(0) +w SIF(w)

S5[f](w) = —w C[f](w)

CIF)(w) = —>F(0) +w SIf]()




Now assume that f, f’, f” are continuous and
absolutely integrable on [0, 00). By the above,

S[f")(w) = —w C[f)(w) = %f(o)w — w?S[f](w),

CIF")(w) = —2F(0) +w SIFI(w) = —=F(0) ~ C[F](w)

SI)(w) = 2F(0) — ?S[F1(w)

CIF")(w) = —2F(0) — 2 CTA)




1 [~ -
Fourier transform: F[f](w) = —/ f(x)e ' dx

217 J_ o
: 2 (™ :
Sine transform:  S[f](w) = —/ f(x) sinwx dx
T Jo

2 o0
Cosine transform: C[f](w) = —/ f(x) cos wx dx
0

™

Proposition Suppose that [~ |f(x)| dx < oco.

(i) If f is even, f(—x) = f(x), then ]—"[f] is also
even; moreover, C[f](w) = 2F[f](w) for all w > 0.
(i) If f is odd, f(—x) = —f(x), then F[f] is also
odd; moreover, S[f](w) = 2i F[f](w) for all w > 0.



Heat equation on a semi-infinite interval

Initial-boundary value problem:

8u 0%u

ou
8x(0 t) =0,
u(x,0) = f(x).

We search for a solution which is smooth and rapidly
decaying as x — oo. Apply the cosine transform
(relative to x) to both sides of the equation:

ou 0%u
|| = <[54}



Let Uw,t) = Clu](w) = % /O " (. £) coswx dx.

ou ou
Then C[a] = E,
dO*u ’ 2 Ju »
C[ﬁ] = —Ww U(w t)—; 5(0 t) = —Ww U(w, t).
aU ,
Hence e —kwU(w, t).

General solution: U(w, t) = ce "k, where ¢ = c(w).

Initial condition u(x,0) = f(x) implies that
U(w,0) = C[f](w).

Therefore U(w, t) = C[f](w) e <k



o0
Solution: u(x,t) = / c(w)e ™™ cos wx dw,
0

2 (0.9]
where c(w) = —/ f(X) coswk dX.

T Jo
The same solution can be obtained by separation of
variables. The solution can be rewritten in the

integral operator form:
u(x, t) :/ G(x, X, t)f(X) dX,
0

. 2 [ e .
where G(x,X,t) = — e K cos wx cos wX dw.
T Jo



Green's function G(x,X,t) =

1 [ .
== / ek (cos (x — X)w + cos (x + X)w) dw
T Jo

We know that
1 [ 2

—/ e " coswy dw =
0

7

L ‘Zj >0
e %, )
VAT

It follows that

i (x+x

G(x,%,t):\/_(e w4 e 4kt)2).




Laplace’s equation in a half-plane
Boundary value problem:
0%u  0%u
a2 By
u(x,0) = f(x).
We assume that f is smooth and rapidly decaying at

infinity. We search for a solution with the same
properties.

=0 (—oco<x<o0, 0<y<o0),

Apply the Fourier transform F (relative to x) to
both sides of the equation:

0%u 0%u
R [P0 5 [24] 2o



Let U(w,y) = Fful(w) = kS /OO u(x,y)e " dx.

2T J_

0%u 02U 0%u o
Then fx [ayzl = ay2, fx [ﬁ] = (Iu)) U(w,y)
0*U SN2 >
Hence o7 —(iw)* U(w,y) = w U(w,y).

General solution: U(w,y) = ae*” + be™ (w # 0),
where a = a(w), b = b(w).

Initial condition u(x,0) = f(x) implies that

U(w,0) = f(w).

Also, we have a boundary condition lim U(w,y) =0,
y—00



Since U(w,y) — 0 as y — o0, it follows that

b(w)e ™™ if w>0,
Ulw,y) = o

a(w)e”” if w<O.

Since U(w,0) = f(w), it follows that
U(w,y) = f(w)e .
| hat F~Lfe=ol 20 0
t turns out tha [E‘ ]( ) m a > U.
Hence U(w,y) = f(w)g(w, y), where
2y

x2 +y2
By the convolution theorem, u(x,y) = (2m)~1f * g.

g(x,y) =



Boundary value problem:

J’u  0O%u
ﬁJﬁa_yz_o (—oo < x <00, 0<y< 00),
u(x,0) = f(x).
Solution:
1 o0 . o\ g
u(x,y) = %/_Oog(x — X, y)f(X) dx




