Math 412-501
Theory of Partial Differential Equations

Lecture 3-11: Review for Exam 3.



Wave equation in polar coordinates

Initial-boundary value problem
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in a domain D = {(r,0) :

=g,

O<r<a 0<60<m/2},

a quarter-circle (given in polar coordinates).

Initial conditions:
u(r.0,0) = £(r,0),

%u(r,0,0) = g(r,0).



Normal derivative:

Ou (a@t)—a (a,0,1),

n
O mf2.0) = O 2, 1),
Chr0.0) =~ 20,1
Boundary conditions:
g‘r’(a 0,t) =0, ge(r 0,t) = ge(r 7/2,t) =

Also, we will need the singular condition
|u(0,0,t)| < oo,

0.



First we search for normal modes: solutions
u(r,8,t) = f(r)h(6)G(t) of the wave equation that
satisfy the boundary conditions.
Note that ¢(r,8) = f(r)h(0) is going to be an
eigenfunction of the Neumann Laplacian in D.
Wave equation in polar coordinates:
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Substitute u(r, 0, t) = f(r)h(0)G(t) into it:
F(rh(9)6"(1) = (F'(r)h(O)G(2)
+r(r6(0)G (1) + 2 (n)h'(9)6(1)).



Divide both sides by cf(r)h(0)G(t):
G'(t)  f(r)  F(r)  H(0)
26  F(r) rf(r) T PRy
It follows that
G"(t)  f(r)  F(r) W)
26 () TF(n) | 7h(0)

Hence G” = —\c’G and
F'(r)h(0) + r 1 f'(r)h(0) + r2F(r)h"(0) = —=Xf(r)h(6).

= — )\ = const.

The latter equation can be rewritten as

V2 = —\¢, where ¢(r,0) = f(r)h(0).



Divide both sides by r=2f(r)h(#):
r?f"(r) rf'(r)  H'(0)

) A we)
It follows that
r2f"(r)  rf'(r) , W)
£r) + Fr) + Ar __h(H) = |t = const.

Hence h” = —ph and
r2f"(r) + rf(r) + (A — p)f(r) = 0.



Boundary conditions 24(r,0,t) = %4(r,w/2,t) =0
hold if H(0) = H(r/2) = 0.

Boundary conditions 2%(a, 6, t) = 0 and

|u(0,0,t)| < oo hold if f'(a) =0 and |f(0)] < co.

We obtain two eigenvalue problems:

rPf" 4+ rf' + (Ar* —p)f =0, f'(a) =0, |£(0)] < oo;
W' = —uh, H(0)=H(r/2)=0.

The second problem has eigenvalues ji,, = (2m)?,

m=20,1,2,..., and eigenfunctions
hm(0) = cos2mf. In particular, hy = 1.



The first eigenvalue problem:

P4 rf' + (A2 —1A)f =0, |F(0)] < o0, F/(a) =

Here v = \/itm = 2m. First assume that A > 0.

New coordinate z = v/\ - r reduces the equation
to Bessel's equation of order v:
2

z Z—Z’;+zj—i+(z2—uz)f:0.
General solution: f(z) = ¢1J,(z) + &Y, (z), where
c1, G are constants.
Hence f(r) = ciJ,(VAr) + @Y, (VAr).
Boundary condition |f(0)| < oo holds if ¢, = 0.
Nonzero solution exists if J/(v/Aa) = 0.

0.



Now consider the case A = 0. Here
r2f" + rf' — 2f = 0.
ar’+cr ™V ifv >0,
General solution: f(r) = ' ? _
a+cologr ifv=0,

where ci, ¢, are constants.

Boundary condition |f(0)| < oo holds if ¢; = 0.
Nonzero solution exists only for v = 0.

Thus there are infinitely many eigenvalues A1, Apo, . ..

where \/Am,a = Jj,, is the nth positive zero of J]
(exception: jg; = 0).

Corresponding eigenfunctions:

fm,n(r) — JV( \V )\m,n r) (nOte that fb,l = ]_)



Dependence on t: G" = —\c?G

— G(t) = ccos(v A ct) + osin(vAct), A >0
latet, A=0

Normal modes:

Som(\/Amnr) - cos2mb - {

and t.

cos(/Am.n Ct) }
sin(/Am.n Ct)

The solution of the initial-boundary value problem is
a superposition of normal modes:



u(r,0,t) = Byit +

-|_Z Z Amndam(v/ Am.n r) cos 2mé cos(r/ Am.n Ct)

m=0 n=1
+ZZ Bm.ndom(\/Am.n 1) c0s2mb sin(y/Am.n ct).
m=0 n=1

Initial conditions u(r,#,0) = f(r,0) and
94(r,0,0) = g(r,0) imply that



U(I’ 0, t):bolt—f—

+ Z Z amndam(\/ Am.n r) cos 2mé cos(r/ Am.n Ct)

m=0 n=1

+ZZ B, sz(\/ mn ) €0s2mb sin(\/Am.q Ct),
m=0 n=1 \’

where

f(r,0) = f:f:am ndom( ,,r) cos2md,

m=0 n=1

io: i bm.ndom(\/Am.n 1) cOS 2mo).

m=0 n=1




In particular, suppose that f(r,0) =0,
g(r,0) = h(r)cos4b.

Then u(r,0,t) =

0o b,
— Z Ja(v/Aa.n r) cos 40 sin(y/ Ao ct),

h(r) = Zb Js(\/ Ao r)

is the Fourier-Bessel series.



Fourier transforms

1 [~ ;
Fourier transform: F[f](w) = 2—/ f(x)e ' dx
TJ_

(0.9]

Sine transform:  S[f](w) = E/ f(x) sinwx dx
T Jo

2 0.0}
Cosine transform: C[f](w) = —/ f(x) coswx dx
T Jo



Inverse Fourier transforms

Inverse Fourier transform:
o0

f_l[f](w):/ f(x)e™™ dx

—0o0

Inverse sine transform:

SHf(w) = /000 f(x) sin wx dx

Inverse cosine transform:

Cf)(w) = /OOO f(x) cos wx dx



Laplace’s equation in a half-plane
Boundary value problem:
0%u  0%u
a2 By
u(x,0) = f(x).
We assume that f is smooth and rapidly decaying at

infinity. We search for a solution with the same
properties.

=0 (—oco<x<o0, 0<y<o0),

Apply the Fourier transform F (relative to x) to
both sides of the equation:

0%u 0%u
R [P0 5 [24] 2o



Let U(w,y) = Fful(w) = kS /OO u(x,y)e " dx.

2T J_

0%u 02U 0%u o
Then fx [ayzl = ay2, fx [ﬁ] = (Iu)) U(w,y)
0*U SN2 >
Hence o7 —(iw)* U(w,y) = w U(w,y).

General solution: U(w,y) = ae*” + be™ (w # 0),
where a = a(w), b = b(w).

Initial condition u(x,0) = f(x) implies that

U(w,0) = f(w).

Also, we have a boundary condition lim U(w,y) =0,
y—00



Since U(w,y) — 0 as y — o0, it follows that

b(w)e ™™ if w>0,
Ulw,y) = o

a(w)e”” if w<O.

Since U(w,0) = f(w), it follows that
U(w,y) = f(w)e .
| hat F~Lfe=ol 20 0
t turns out tha [E‘ ]( ) m a > U.
Hence U(w,y) = f(w)g(w, y), where
2y

x2 +y2
By the convolution theorem, u(x,y) = (2m)~1f * g.

g(x,y) =



Boundary value problem:

J’u  0O%u
ﬁJﬁa_yz_o (—oo < x <00, 0<y< 00),
u(x,0) = f(x).
Solution:
1 o0 . o\ g
u(x,y) = %/_Oog(x — X, y)f(X) dx




Properties of Fourier transforms

Linearity and Shift Theorem

(i) Flaf + bg] = aF[f] + bF|g] for all a,b € C.
(i) If g(x) = f(x + a) then g(w) = e“F(w).
(iii) If h(x) = €7*f(x) then h(w) = f(w — J).

Convolution Theorem
(i) FIf - g] = FIf] = Flgl;
(ii) F[f = g| = 2n F[f] - Flg].



We know that Xj_, ,(w) = >n

Tw
Problem 1. Find the Fourier transform of X[ 2,

Solution.  Clearly, x[022(X) = X[-a,4)(X — a). By
the shift theorem,

. i~ i, SINaw
X[O,2a](w) =e " X[—a,a](w) =e

Tw



sinaw sin aw
Problem 2. Compute * :
W Tw

Solution. By the convolution theorem,

sinaw sin aw
F [

o, i o, ] - 27TX[2—aaa] = 27X[-a,4]-

Hence
sinaw sin aw 2 sin aw

>k =
W W W




