
Math 412-501

Theory of Partial Differential Equations

Lecture 3-1:
Heat equation in an arbitrary domain.

Spectrum of Laplace’s operator.



Heat conduction in an arbitrary domain

Initial-boundary value problem:

∂u

∂t
= k

(∂2u

∂x2
+
∂2u

∂y 2

)

, (x , y) ∈ D,

u(x , y , 0) = f (x , y), (x , y) ∈ D,

Boundary condition: u|∂D = 0,

i.e., u(x , y , t) = 0 for (x , y) ∈ ∂D.

(Dirichlet condition)

Alternative boundary condition:
∂u

∂n

∣

∣

∣

∂D
= 0,

where ∂u
∂n

= ∇u · n is the normal derivative.

(Neumann condition)



Mixed boundary condition:
∂D = γ1 ⊔ γ2 (disjoint union),

u|γ1
= 0,

∂u

∂n

∣

∣

∣

γ2

= 0.

Boundary condition of the third kind:
(∂u

∂n
+ αu

)
∣

∣

∣

∂D
= 0, where α is a function on ∂D.

We search for the solution u(x , y , t) as a
superposition of solutions with separated variables
that satisfy the boundary conditions.

For a general domain, we can only separate the time
variable from the others.



Separation of variables: u(x , y , t) = φ(x , y)G (t).
Substitute this into the heat equation:

φ(x , y)
dG

dt
= k

(

∂2φ

∂x2
+
∂2φ

∂y 2

)

G (t).

Divide both sides by k · φ(x , y)G (t) = k · u(x , y , t):

1

kG
·
dG

dt
=

1

φ
·

(

∂2φ

∂x2
+
∂2φ

∂y 2

)

.

It follows that

1

kG
·
dG

dt
=

1

φ
·

(

∂2φ

∂x2
+
∂2φ

∂y 2

)

= −λ,

where λ is a separation constant.



The time variable has been separated:

dG

dt
= −λkG , ∇2φ = −λφ.

Proposition Suppose G and φ are solutions of the
above differential equations for the same value of λ.
Then u(x , y , t) = φ(x , y)G (t) is a solution of the
heat equation.

Boundary condition u|∂D = 0 holds if φ|∂D = 0.

Boundary condition
∂u

∂n

∣

∣

∣

∂D
= 0 holds if

∂φ

∂n

∣

∣

∣

∂D
= 0.



Eigenvalue problem:

∇2φ = −λφ, φ|∂D = 0.

(Dirichlet Laplacian)

Alternative eigenvalue problem:

∇2φ = −λφ, ∂φ
∂n

∣

∣

∣

∂D
= 0.

(Neumann Laplacian)

We assume that there are eigenvalues λ1, λ2, . . .

and corresponding eigenfunctions
φ1(x , y), φ2(x , y), . . . .

Dependence on t:
G ′(t) = −λkG (t) =⇒ G (t) = C0e

−λkt



Solution of the boundary value problem:

u(x , y , t) = e−λnktφn(x , y).

We are looking for the solution of the
initial-boundary value problem as a superposition of
solutions with separated variables.

u(x , y , t) =
∑∞

n=1
cne

−λnktφn(x , y)

How do we find coefficients cn?
Substitute the series into the initial condition
u(x , y , 0) = f (x , y).

f (x , y) =
∑∞

n=1
cnφn(x , y)



How do we solve the heat conduction problem?

∂u

∂t
= k

(∂2u

∂x2
+
∂2u

∂y 2

)

, (x , y) ∈ D,

u(x , y , 0) = f (x , y), (x , y) ∈ D,

u|∂D = 0.

• Expand f into eigenfunctions of the Dirichlet
Laplacian:

f (x , y) =
∑∞

n=1
cnφn(x , y).

• Write the solution:

u(x , y , t) =
∑∞

n=1
cne

−λnktφn(x , y).



Spectrum of the Laplacian

Eigenvalue problem:

∇2φ+ λφ = 0 in D,
(

αφ+ β
∂φ

∂n

)
∣

∣

∣

∂D
= 0,

where α, β are piecewise continuous functions on
∂D such that |α| + |β| 6= 0 everywhere on ∂D.

We assume that ∂D is piecewise smooth.

The PDE is called the Helmholtz equation.

Boundary condition covers all cases considered.



The eigenvalue problem is the many-dimensional
analog of the Sturm-Liouville eigenvalue problem.

The eigenvalues of the problem are eigenvalues of
the negative Laplacian −∇2.

The set of eigenvalues of an operator is called its
spectrum. Properties of eigenvalues and
eigenfunctions are called spectral properties.

The Laplacian has six important spectral properties.



Property 1. All eigenvalues are real.

Property 2. All eigenvalues can be arranged in
the ascending order

λ1 < λ2 < . . . < λn < λn+1 < . . .

so that λn → ∞ as n → ∞.

This means that:
• there are infinitely many eigenvalues;
• there is a smallest eigenvalue;
• on any finite interval, there are only finitely

many eigenvalues.

Remark. For the Dirichlet Laplacian, λ1 > 0.
For the Neumann Laplacian, λ1 = 0.



The set of eigenfunctions corresponding to a
particular eigenvalue λ together with zero function
form a linear space. The dimension of this space is
called the multiplicity of λ.

An eigenvalue is simple if it is of multiplicity 1.
Then the eigenfunction is unique up to
multiplication by a scalar.
Otherwise the eigenvalue is called multiple.

Property 3. An eigenvalue λn may be multiple
but its multiplicity is finite.

Moreover, the smallest eigenvalue λ1 is simple,
and the corresponding eigenfunction φ1 has no zeros
inside the domain D.



Property 4. Eigenfunctions corresponding to
different eigenvalues are orthogonal relative to the
inner product

〈f , g〉 =

∫∫

D

f (x , y)g(x , y) dx dy .

That is, 〈φ, ψ〉 = 0 whenever φ and ψ are
eigenfunctions corresponding to different
eigenvalues.



Property 5. Any eigenfunction φ can be related
to its eigenvalue λ through the Rayleigh quotient:

λ =

−

∮

∂D

φ
∂φ

∂n
ds +

∫∫

D

|∇φ|2 dx dy

∫∫

D

|φ|2 dx dy

.



Property 6. There exists a sequence φ1, φ2, . . . of
pairwise orthogonal eigenfunctions that is complete
in the Hilbert space L2(D).

Any square-integrable function f ∈ L2(D) is
expanded into a series

f (x , y) =
∑∞

n=1
cnφn(x , y),

that converges in the mean. The series is unique:

cn =
〈f , φn〉

〈φn, φn〉
.

If f is piecewise smooth then the series converges
pointwise to f at points of continuity.



Example.

∇2φ = −λφ in D = {(x , y) | 0 < x < L, 0 < y < H},

φ(0, y) = φ(L, y) = 0, φ(x , 0) = φ(x ,H) = 0.

This problem can be solved by separation of variables.

Eigenfunctions φnm(x , y) = sin nπx
L

sin mπy

H
, n,m ≥ 1.

Corresponding eigenvalues: λnm = (nπ
L

)2 + (mπ
H

)2.

Thus the double Fourier sine series is the expansion
in eigenfunctions of the Dirichlet Laplacian in a
rectangle.

Similarly, the double Fourier cosine series is the
expansion in eigenfunctions of the Neumann
Laplacian in a rectangle.


