Math 412-501
Theory of Partial Differential Equations
Lecture 3-1:
Heat equation in an arbitrary domain. Spectrum of Laplace's operator.

Heat conduction in an arbitrary domain

Initial-boundary value problem:

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right), \quad(x, y) \in D
$$

$u(x, y, 0)=f(x, y), \quad(x, y) \in D$,
Boundary condition: $\left.u\right|_{\partial D}=0$, i.e., $u(x, y, t)=0$ for $(x, y) \in \partial D$.
(Dirichlet condition)
Alternative boundary condition: $\left.\frac{\partial u}{\partial n}\right|_{\partial D}=0$, where $\frac{\partial u}{\partial n}=\nabla u \cdot \mathbf{n}$ is the normal derivative.
(Neumann condition)

Mixed boundary condition:
$\partial D=\gamma_{1} \sqcup \gamma_{2}$ (disjoint union),
$\left.u\right|_{\gamma_{1}}=0,\left.\quad \frac{\partial u}{\partial n}\right|_{\gamma_{2}}=0$.
Boundary condition of the third kind:
$\left.\left(\frac{\partial u}{\partial n}+\alpha u\right)\right|_{\partial D}=0$, where α is a function on ∂D.
We search for the solution $u(x, y, t)$ as a superposition of solutions with separated variables that satisfy the boundary conditions.
For a general domain, we can only separate the time variable from the others.

Separation of variables: $u(x, y, t)=\phi(x, y) G(t)$. Substitute this into the heat equation:

$$
\phi(x, y) \frac{d G}{d t}=k\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right) G(t)
$$

Divide both sides by $k \cdot \phi(x, y) G(t)=k \cdot u(x, y, t)$:

$$
\frac{1}{k G} \cdot \frac{d G}{d t}=\frac{1}{\phi} \cdot\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)
$$

It follows that

$$
\frac{1}{k G} \cdot \frac{d G}{d t}=\frac{1}{\phi} \cdot\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)=-\lambda
$$

where λ is a separation constant.

The time variable has been separated:

$$
\frac{d G}{d t}=-\lambda k G, \quad \nabla^{2} \phi=-\lambda \phi
$$

Proposition Suppose G and ϕ are solutions of the above differential equations for the same value of λ. Then $u(x, y, t)=\phi(x, y) G(t)$ is a solution of the heat equation.

Boundary condition $\left.u\right|_{\partial D}=0$ holds if $\left.\phi\right|_{\partial D}=0$.
Boundary condition $\left.\frac{\partial u}{\partial n}\right|_{\partial D}=0$ holds if $\left.\frac{\partial \phi}{\partial n}\right|_{\partial D}=0$.

Eigenvalue problem:

$$
\nabla^{2} \phi=-\lambda \phi,\left.\quad \phi\right|_{\partial D}=0
$$

(Dirichlet Laplacian)
Alternative eigenvalue problem:

$$
\nabla^{2} \phi=-\lambda \phi,\left.\quad \frac{\partial \phi}{\partial n}\right|_{\partial D}=0 .
$$

(Neumann Laplacian)
We assume that there are eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$ and corresponding eigenfunctions $\phi_{1}(x, y), \phi_{2}(x, y), \ldots$
Dependence on t :

$$
G^{\prime}(t)=-\lambda k G(t) \Longrightarrow G(t)=C_{0} e^{-\lambda k t}
$$

Solution of the boundary value problem:

$$
u(x, y, t)=e^{-\lambda_{n} k t} \phi_{n}(x, y) .
$$

We are looking for the solution of the initial-boundary value problem as a superposition of solutions with separated variables.

$$
u(x, y, t)=\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n} k t} \phi_{n}(x, y)
$$

How do we find coefficients c_{n} ?
Substitute the series into the initial condition $u(x, y, 0)=f(x, y)$.

$$
f(x, y)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x, y)
$$

How do we solve the heat conduction problem?

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right), \quad(x, y) \in D, \\
& u(x, y, 0)=f(x, y), \quad(x, y) \in D, \\
& \left.u\right|_{\partial D}=0
\end{aligned}
$$

- Expand f into eigenfunctions of the Dirichlet Laplacian:

$$
f(x, y)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x, y)
$$

- Write the solution:

$$
u(x, y, t)=\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n} k t} \phi_{n}(x, y)
$$

Spectrum of the Laplacian

Eigenvalue problem:

$$
\begin{gathered}
\nabla^{2} \phi+\lambda \phi=0 \quad \text { in } \quad D \\
\left.\left(\alpha \phi+\beta \frac{\partial \phi}{\partial n}\right)\right|_{\partial D}=0
\end{gathered}
$$

where α, β are piecewise continuous functions on ∂D such that $|\alpha|+|\beta| \neq 0$ everywhere on ∂D.
We assume that ∂D is piecewise smooth.
The PDE is called the Helmholtz equation.
Boundary condition covers all cases considered.

The eigenvalue problem is the many-dimensional analog of the Sturm-Liouville eigenvalue problem.

The eigenvalues of the problem are eigenvalues of the negative Laplacian $-\nabla^{2}$.

The set of eigenvalues of an operator is called its spectrum. Properties of eigenvalues and eigenfunctions are called spectral properties.

The Laplacian has six important spectral properties.

Property 1. All eigenvalues are real.

Property 2. All eigenvalues can be arranged in the ascending order

$$
\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}<\lambda_{n+1}<\ldots
$$

so that $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
This means that:

- there are infinitely many eigenvalues;
- there is a smallest eigenvalue;
- on any finite interval, there are only finitely many eigenvalues.

Remark. For the Dirichlet Laplacian, $\lambda_{1}>0$.
For the Neumann Laplacian, $\lambda_{1}=0$.

The set of eigenfunctions corresponding to a particular eigenvalue λ together with zero function form a linear space. The dimension of this space is called the multiplicity of λ.
An eigenvalue is simple if it is of multiplicity 1.
Then the eigenfunction is unique up to multiplication by a scalar.
Otherwise the eigenvalue is called multiple.
Property 3. An eigenvalue λ_{n} may be multiple but its multiplicity is finite.

Moreover, the smallest eigenvalue λ_{1} is simple, and the corresponding eigenfunction ϕ_{1} has no zeros inside the domain D.

Property 4. Eigenfunctions corresponding to different eigenvalues are orthogonal relative to the inner product

$$
\langle f, g\rangle=\iint_{D} f(x, y) \overline{g(x, y)} d x d y
$$

That is, $\langle\phi, \psi\rangle=0$ whenever ϕ and ψ are eigenfunctions corresponding to different eigenvalues.

Property 5. Any eigenfunction ϕ can be related to its eigenvalue λ through the Rayleigh quotient:

$$
\lambda=\frac{-\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} d s+\iint_{D}|\nabla \phi|^{2} d x d y}{\iint_{D}|\phi|^{2} d x d y}
$$

Property 6. There exists a sequence $\phi_{1}, \phi_{2}, \ldots$ of pairwise orthogonal eigenfunctions that is complete in the Hilbert space $L_{2}(D)$.
Any square-integrable function $f \in L_{2}(D)$ is expanded into a series

$$
f(x, y)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x, y)
$$

that converges in the mean. The series is unique:

$$
c_{n}=\frac{\left\langle f, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle} .
$$

If f is piecewise smooth then the series converges pointwise to f at points of continuity.

Example.

$$
\begin{gathered}
\nabla^{2} \phi=-\lambda \phi \text { in } D=\{(x, y) \mid 0<x<L, 0<y<H\} \\
\phi(0, y)=\phi(L, y)=0, \quad \phi(x, 0)=\phi(x, H)=0
\end{gathered}
$$

This problem can be solved by separation of variables.
Eigenfunctions $\phi_{n m}(x, y)=\sin \frac{n \pi x}{L} \sin \frac{m \pi y}{H}, n, m \geq 1$.
Corresponding eigenvalues: $\lambda_{n m}=\left(\frac{n \pi}{L}\right)^{2}+\left(\frac{m \pi}{H}\right)^{2}$.
Thus the double Fourier sine series is the expansion in eigenfunctions of the Dirichlet Laplacian in a rectangle.

Similarly, the double Fourier cosine series is the expansion in eigenfunctions of the Neumann Laplacian in a rectangle.

