Math 412-501
Theory of Partial Differential Equations

Lecture 3-2:
 Spectral properties of the Laplacian. Bessel functions.

Eigenvalue problem:

$$
\begin{gathered}
\nabla^{2} \phi+\lambda \phi=0 \quad \text { in } \quad D \\
\left.\left(\alpha \phi+\beta \frac{\partial \phi}{\partial n}\right)\right|_{\partial D}=0
\end{gathered}
$$

where α, β are piecewise continuous real functions on ∂D such that $|\alpha|+|\beta| \neq 0$ everywhere on ∂D.
We assume that the boundary ∂D is piecewise smooth.

6 spectral properties of the Laplacian

Property 1. All eigenvalues are real.
Property 2. All eigenvalues can be arranged in the ascending order

$$
\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}<\lambda_{n+1}<\ldots
$$

so that $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
This means that:

- there are infinitely many eigenvalues;
- there is a smallest eigenvalue;
- on any finite interval, there are only finitely many eigenvalues.

Property 3. An eigenvalue λ_{n} may be multiple but its multiplicity is finite.

Moreover, the smallest eigenvalue λ_{1} is simple, and the corresponding eigenfunction ϕ_{1} has no zeros inside the domain D.

Property 4. Eigenfunctions corresponding to different eigenvalues are orthogonal relative to the inner product

$$
\langle f, g\rangle=\iint_{D} f(x, y) \overline{g(x, y)} d x d y
$$

Property 5. Any eigenfunction ϕ can be related to its eigenvalue λ through the Rayleigh quotient:

$$
\lambda=\frac{-\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} d s+\iint_{D}|\nabla \phi|^{2} d x d y}{\iint_{D}|\phi|^{2} d x d y}
$$

Property 6. There exists a sequence $\phi_{1}, \phi_{2}, \ldots$ of pairwise orthogonal eigenfunctions that is complete in the Hilbert space $L_{2}(D)$.
Any square-integrable function $f \in L_{2}(D)$ is expanded into a series

$$
f(x, y)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x, y)
$$

that converges in the mean. The series is unique:

$$
c_{n}=\frac{\left\langle f, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle} .
$$

If f is piecewise smooth then the series converges pointwise to f at points of continuity.

Rayleigh quotient

Suppose that $\nabla^{2} \phi=-\lambda \phi$ in the domain D.
Multiply both sides by ϕ and integrate over D :

$$
\iint_{D} \phi \nabla^{2} \phi d x d y=-\lambda \iint_{D}|\phi|^{2} d x d y
$$

Green's formula:

$$
\iint_{D} \psi \nabla^{2} \phi d A=\oint_{\partial D} \psi \frac{\partial \phi}{\partial n} d s-\iint_{D} \nabla \psi \cdot \nabla \phi d A
$$

This is an analog of integration by parts. Now $\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} d s-\iint_{D}|\nabla \phi|^{2} d x d y=-\lambda \iint_{D}|\phi|^{2} d x d y$.

It follows that

$$
\lambda=\frac{-\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} d s+\iint_{D}|\nabla \phi|^{2} d x d y}{\iint_{D}|\phi|^{2} d x d y}
$$

If ϕ satisfies the boundary condition $\left.\phi\right|_{\partial D}=0$ or $\left.\frac{\partial \phi}{\partial n}\right|_{\partial D}=0$ (or mixed), then the one-dimensional integral vanishes. In particular, $\lambda \geq 0$.
If $\frac{\partial \phi}{\partial n}+\alpha \phi=0$ on ∂D, then

$$
-\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} d s=\oint_{\partial D} \alpha|\phi|^{2} d s
$$

In particular, if $\alpha \geq 0$ everywhere on ∂D, then $\lambda \geq 0$.

Self-adjointness

$\iint_{D} \psi \nabla^{2} \phi d x d y=\oint_{\partial D} \psi \frac{\partial \phi}{\partial n} d s-\iint_{D} \nabla \psi \cdot \nabla \phi d x d y$

(Green's first identity)

$$
\iint_{D}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d x d y=\oint_{\partial D}\left(\phi \frac{\partial \psi}{\partial n}-\psi \frac{\partial \phi}{\partial n}\right) d s
$$

(Green's second identity)
If ϕ and ψ satisfy the same boundary condition

$$
\left.\left(\alpha \phi+\beta \frac{\partial \phi}{\partial n}\right)\right|_{\partial D}=\left.\left(\alpha \psi+\beta \frac{\partial \psi}{\partial n}\right)\right|_{\partial D}=0
$$

then $\phi \frac{\partial \psi}{\partial n}-\psi \frac{\partial \phi}{\partial n}=0$ everywhere on ∂D.

If ϕ and ψ satisfy the same boundary condition then

$$
\iint_{D}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d x d y=0
$$

If ϕ and ψ are complex-valued functions then also

$$
\iint_{D}\left(\phi \overline{\nabla^{2} \psi}-\bar{\psi} \nabla^{2} \phi\right) d x d y=0
$$

(because $\overline{\nabla^{2} \psi}=\nabla^{2} \bar{\psi}$ and $\bar{\psi}$ satisfies the same boundary condition as ψ).

Thus $\left\langle\nabla^{2} \phi, \psi\right\rangle=\left\langle\phi, \nabla^{2} \psi\right\rangle$, where

$$
\langle f, g\rangle=\iint_{D} f(x, y) \overline{g(x, y)} d x d y
$$

Eigenvalue problem:

$$
\begin{gathered}
\nabla^{2} \phi+\lambda \phi=0 \quad \text { in } \quad D \\
\left.\left(\alpha \phi+\beta \frac{\partial \phi}{\partial n}\right)\right|_{\partial D}=0
\end{gathered}
$$

The Laplacian ∇^{2} is self-adjoint in the subspace of functions satisfying the boundary condition.
Suppose ϕ is an eigenfunction belonging to an eigenvalue λ. Let us show that $\lambda \in \mathbb{R}$.
Since $\nabla^{2} \phi=-\lambda \phi$, we have that

$$
\begin{aligned}
\left\langle\nabla^{2} \phi, \phi\right\rangle & =\langle-\lambda \phi, \phi\rangle=-\lambda\langle\phi, \phi\rangle \\
\left\langle\phi, \nabla^{2} \phi\right\rangle & =\langle\phi,-\lambda \phi\rangle=-\bar{\lambda}\langle\phi, \phi\rangle .
\end{aligned}
$$

Now $\left\langle\nabla^{2} \phi, \phi\right\rangle=\left\langle\phi, \nabla^{2} \phi\right\rangle$ and $\langle\phi, \phi\rangle>0$ imply $\lambda \in \mathbb{R}$.

Suppose ϕ_{1} and ϕ_{2} are eigenfunctions belonging to different eigenvalues λ_{1} and λ_{2}.

Let us show that $\left\langle\phi_{1}, \phi_{2}\right\rangle=0$.
Since $\nabla^{2} \phi_{1}=-\lambda_{1} \phi_{1}, \nabla^{2} \phi_{2}=-\lambda_{2} \phi_{2}$, we have that

$$
\begin{aligned}
\left\langle\nabla^{2} \phi_{1}, \phi_{2}\right\rangle & =\left\langle-\lambda_{1} \phi_{1}, \phi_{2}\right\rangle=-\lambda_{1}\left\langle\phi_{1}, \phi_{2}\right\rangle, \\
\left\langle\phi_{1}, \nabla^{2} \phi_{2}\right\rangle & =\left\langle\phi_{1},-\lambda_{2} \phi_{2}\right\rangle=-\bar{\lambda}_{2}\left\langle\phi_{1}, \phi_{2}\right\rangle .
\end{aligned}
$$

But $\left\langle\nabla^{2} \phi_{1}, \phi_{2}\right\rangle=\left\langle\phi_{1}, \nabla^{2} \phi_{2}\right\rangle$, hence

$$
-\lambda_{1}\left\langle\phi_{1}, \phi_{2}\right\rangle=-\bar{\lambda}_{2}\left\langle\phi_{1}, \phi_{2}\right\rangle .
$$

We already know that $\bar{\lambda}_{2}=\lambda_{2}$. Also, $\lambda_{1} \neq \lambda_{2}$. It follows that $\left\langle\phi_{1}, \phi_{2}\right\rangle=0$.

The main purpose of the Rayleigh quotient

Consider a functional (function on functions)

$$
R Q[\phi]=\frac{-\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} d s+\iint_{D}|\nabla \phi|^{2} d x d y}{\iint_{D}|\phi|^{2} d x d y}
$$

If ϕ is an eigenfunction of $-\nabla^{2}$ in the domain D with some boundary condition, then $R Q[\phi]$ is the corresponding eigenvalue.

What if ϕ is not?

Let $\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots \leq \lambda_{n} \leq \lambda_{n+1} \leq \ldots$ be eigenvalues of a particular eigenvalue problem counted with multiplicities.

That is, a simple eigenvalue appears once in this sequence, an eigenvalue of multiplicity two appears twice, and so on.

There is a complete orthogonal system $\phi_{1}, \phi_{2}, \ldots$ in the Hilbert space $L_{2}(D)$ such that ϕ_{n} is an eigenfunction belonging to λ_{n}.

Theorem (i) $\lambda_{1}=\min R Q[\phi]$, where the minimum is taken over all nonzero functions ϕ which are differentiable in D and satisfy the boundary condition. Moreover, if $R Q[\phi]=\lambda_{1}$ then ϕ is an eigenfunction.
(ii) $\lambda_{n}=\min R Q[\phi]$, where the minimum is taken over all nonzero functions ϕ which are differentiable in D, satisfy the boundary condition, and such that $\left\langle\phi, \phi_{k}\right\rangle=0$ for $1 \leq k<n$. Moreover, the minimum is attained only on eigenfunctions.

Main idea of the proof: $R Q[\phi]=\frac{\left\langle-\nabla^{2} \phi, \phi\right\rangle}{\langle\phi, \phi\rangle}$. (see Haberman 5.6)

Spectral properties of the Laplacian in a circle

Eigenvalue problem:

$$
\begin{aligned}
& \nabla^{2} \phi+\lambda \phi=0 \text { in } D=\left\{(x, y): x^{2}+y^{2} \leq R^{2}\right\} \\
& \left.u\right|_{\partial D}=0
\end{aligned}
$$

In polar coordinates (r, θ) :

$$
\begin{aligned}
& \frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}+\lambda \phi=0 \\
& \\
& (0<r<R,-\pi<\theta<\pi) \\
& \phi(R, \theta)=0 \quad(-\pi<\theta<\pi)
\end{aligned}
$$

Additional boundary conditions:

$$
|\phi(0, \theta)|<\infty \quad(-\pi<\theta<\pi)
$$

$\phi(r,-\pi)=\phi(r, \pi), \quad \frac{\partial \phi}{\partial \theta}(r,-\pi)=\frac{\partial \phi}{\partial \theta}(r, \pi) \quad(0<r<R)$.
Separation of variables: $\phi(r, \theta)=f(r) h(\theta)$.
Substitute this into the equation:
$f^{\prime \prime}(r) h(\theta)+r^{-1} f^{\prime}(r) h(\theta)+r^{-2} f(r) h^{\prime \prime}(\theta)+\lambda f(r) h(\theta)=0$.
Divide by $f(r) h(\theta)$ and multiply by r^{2} :

$$
\frac{r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\lambda r^{2} f(r)}{f(r)}+\frac{h^{\prime \prime}(\theta)}{h(\theta)}=0
$$

It follows that

$$
\frac{r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\lambda r^{2} f(r)}{f(r)}=-\frac{h^{\prime \prime}(\theta)}{h(\theta)}=\mu=\text { const. }
$$

The variables have been separated:

$$
\begin{gathered}
r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-\mu\right) f=0 \\
h^{\prime \prime}=-\mu h .
\end{gathered}
$$

Boundary conditions $\phi(R, \theta)=0$ and $|\phi(0, \theta)|<\infty$ hold if $f(R)=0$ and $|f(0)|<\infty$.
Boundary conditions $\phi(r,-\pi)=\phi(r, \pi)$ and $\frac{\partial \phi}{\partial \theta}(r,-\pi)=\frac{\partial \phi}{\partial \theta}(r, \pi)$ hold if $h(-\pi)=h(\pi)$ and $h^{\prime}(-\pi)=h^{\prime}(\pi)$.

Eigenvalue problem:

$$
h^{\prime \prime}=-\mu h, \quad h(-\pi)=h(\pi), h^{\prime}(-\pi)=h^{\prime}(\pi)
$$

Eigenvalues: $\mu_{m}=m^{2}, m=0,1,2, \ldots$ $\mu_{0}=0$ is simple, the others are of multiplicity 2 .

Eigenfunctions: $h_{0}=1, h_{m}(\theta)=\cos m \theta$ and $\tilde{h}_{m}(\theta)=\sin m \theta$ for $m \geq 1$.

Dependence on r :
$r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-\mu\right) f=0, \quad f(R)=0,|f(0)|<\infty$.
We may assume that $\mu=m^{2}, m=0,1,2, \ldots$ Also, we know that $\lambda>0$ (Rayleigh quotient!).
New variable $z=\sqrt{\lambda} \cdot r$ removes dependence on λ :

$$
z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}+\left(z^{2}-m^{2}\right) f=0
$$

This is Bessel's differential equation of order m. Solutions are called Bessel functions of order m.

