Math 412-501 Theory of Partial Differential Equations Lecture 3-2: Spectral properties of the Laplacian. Bessel functions.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Eigenvalue problem:

$$\nabla^2 \phi + \lambda \phi = 0 \quad \text{in } D,$$
$$\left(\alpha \phi + \beta \frac{\partial \phi}{\partial n} \right) \Big|_{\partial D} = 0,$$

where α, β are piecewise continuous real functions on ∂D such that $|\alpha| + |\beta| \neq 0$ everywhere on ∂D . We assume that the boundary ∂D is piecewise smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

6 spectral properties of the Laplacian

Property 1. All eigenvalues are real.

Property 2. All eigenvalues can be arranged in the ascending order

$$\lambda_1 < \lambda_2 < \ldots < \lambda_n < \lambda_{n+1} < \ldots$$

so that $\lambda_n \to \infty$ as $n \to \infty$.

This means that:

- there are infinitely many eigenvalues;
- there is a smallest eigenvalue;
- on any finite interval, there are only finitely many eigenvalues.

Property 3. An eigenvalue λ_n may be multiple but its multiplicity is finite.

Moreover, the smallest eigenvalue λ_1 is simple, and the corresponding eigenfunction ϕ_1 has no zeros inside the domain D.

Property 4. Eigenfunctions corresponding to different eigenvalues are **orthogonal** relative to the inner product

$$\langle f,g\rangle = \iint_D f(x,y)\overline{g(x,y)}\,dx\,dy.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Property 5. Any eigenfunction ϕ can be related to its eigenvalue λ through the **Rayleigh quotient**:

$$\lambda = \frac{-\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} \, ds + \iint_{D} |\nabla \phi|^2 \, dx \, dy}{\iint_{D} |\phi|^2 \, dx \, dy}.$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Property 6. There exists a sequence ϕ_1, ϕ_2, \ldots of pairwise orthogonal eigenfunctions that is **complete** in the Hilbert space $L_2(D)$.

Any square-integrable function $f \in L_2(D)$ is expanded into a series

$$f(x,y) = \sum_{n=1}^{\infty} c_n \phi_n(x,y),$$

that converges in the mean. The series is unique:

$$c_n = \frac{\langle f, \phi_n \rangle}{\langle \phi_n, \phi_n \rangle}.$$

If f is piecewise smooth then the series converges pointwise to f at points of continuity.

Rayleigh quotient

Suppose that $\nabla^2 \phi = -\lambda \phi$ in the domain *D*. Multiply both sides by ϕ and integrate over *D*:

$$\iint_D \phi \, \nabla^2 \phi \, dx \, dy = -\lambda \iint_D |\phi|^2 \, dx \, dy.$$

Green's formula:

$$\iint_{D} \psi \, \nabla^2 \phi \, dA = \oint_{\partial D} \psi \, \frac{\partial \phi}{\partial n} \, ds - \iint_{D} \nabla \psi \cdot \nabla \phi \, dA$$

This is an analog of integration by parts. Now

$$\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} \, ds - \iint_{D} |\nabla \phi|^2 \, dx \, dy = -\lambda \iint_{D} |\phi|^2 \, dx \, dy.$$

It follows that

$$\lambda = \frac{-\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} \, ds + \iint_{D} |\nabla \phi|^2 \, dx \, dy}{\iint_{D} |\phi|^2 \, dx \, dy}.$$

If ϕ satisfies the boundary condition $\phi|_{\partial D} = 0$ or $\frac{\partial \phi}{\partial n}\Big|_{\partial D} = 0$ (or mixed), then the one-dimensional integral vanishes. In particular, $\lambda \ge 0$.

If
$$\frac{\partial \phi}{\partial n} + \alpha \phi = 0$$
 on ∂D , then
 $-\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} ds = \oint_{\partial D} \alpha |\phi|^2 ds.$

In particular, if $\alpha \geq 0$ everywhere on ∂D , then $\lambda \geq 0$.

(日)、(型)、(E)、(E)、(E)、(O)(()

Self-adjointness

$$\iint_{D} \psi \nabla^{2} \phi \, dx \, dy = \oint_{\partial D} \psi \, \frac{\partial \phi}{\partial n} \, ds - \iint_{D} \nabla \psi \cdot \nabla \phi \, dx \, dy$$

(Green's first identity)

$$\iint_{D} (\phi \, \nabla^2 \psi - \psi \, \nabla^2 \phi) \, d\mathsf{x} \, d\mathsf{y} = \oint_{\partial D} \left(\phi \, \frac{\partial \psi}{\partial \mathsf{n}} - \psi \, \frac{\partial \phi}{\partial \mathsf{n}} \right) \, d\mathsf{s}$$

(Green's second identity)

If ϕ and ψ satisfy the same boundary condition $\left(\alpha\phi + \beta\frac{\partial\phi}{\partial n}\right)\Big|_{\partial D} = \left(\alpha\psi + \beta\frac{\partial\psi}{\partial n}\right)\Big|_{\partial D} = 0$ then $\phi\frac{\partial\psi}{\partial n} - \psi\frac{\partial\phi}{\partial n} = 0$ everywhere on ∂D . If ϕ and ψ satisfy the same boundary condition then $\iint_{\Sigma} (\phi \nabla^2 \psi - \psi \nabla^2 \phi) \, dx \, dy = 0.$

If ϕ and ψ are complex-valued functions then also $\iint_D (\phi \, \overline{\nabla^2 \psi} - \overline{\psi} \, \nabla^2 \phi) \, dx \, dy = 0$

(because $\overline{\nabla^2 \psi} = \nabla^2 \overline{\psi}$ and $\overline{\psi}$ satisfies the same boundary condition as ψ).

Thus
$$\langle \nabla^2 \phi, \psi \rangle = \langle \phi, \nabla^2 \psi \rangle$$
, where
 $\langle f, g \rangle = \iint_D f(x, y) \overline{g(x, y)} \, dx \, dy.$

Eigenvalue problem:

$$\nabla^2 \phi + \lambda \phi = 0 \quad \text{in } D,$$
$$\left(\alpha \phi + \beta \frac{\partial \phi}{\partial n} \right) \Big|_{\partial D} = 0.$$

The Laplacian ∇^2 is self-adjoint in the subspace of functions satisfying the boundary condition.

Suppose ϕ is an eigenfunction belonging to an eigenvalue λ . Let us show that $\lambda \in \mathbb{R}$.

Since $abla^2\phi=-\lambda\phi$, we have that

$$\langle \nabla^2 \phi, \phi \rangle = \langle -\lambda \phi, \phi \rangle = -\lambda \langle \phi, \phi \rangle,$$

$$\langle \phi, \nabla^2 \phi \rangle = \langle \phi, -\lambda \phi \rangle = -\lambda \langle \phi, \phi \rangle.$$

Now $\langle \nabla^2 \phi, \phi \rangle = \langle \phi, \nabla^2 \phi \rangle$ and $\langle \phi, \phi \rangle > 0$ imply $\lambda \in \mathbb{R}$.

Suppose ϕ_1 and ϕ_2 are eigenfunctions belonging to different eigenvalues λ_1 and λ_2 .

Let us show that $\langle \phi_1, \phi_2 \rangle = 0$. Since $\nabla^2 \phi_1 = -\lambda_1 \phi_1$, $\nabla^2 \phi_2 = -\lambda_2 \phi_2$, we have that $\langle \nabla^2 \phi_1, \phi_2 \rangle = \langle -\lambda_1 \phi_1, \phi_2 \rangle = -\lambda_1 \langle \phi_1, \phi_2 \rangle$, $\langle \phi_1, \nabla^2 \phi_2 \rangle = \langle \phi_1, -\lambda_2 \phi_2 \rangle = -\overline{\lambda}_2 \langle \phi_1, \phi_2 \rangle$. But $\langle \nabla^2 \phi_1, \phi_2 \rangle = \langle \phi_1, \nabla^2 \phi_2 \rangle$, hence $-\lambda_1 \langle \phi_1, \phi_2 \rangle = -\overline{\lambda}_2 \langle \phi_1, \phi_2 \rangle$.

We already know that $\overline{\lambda}_2 = \lambda_2$. Also, $\lambda_1 \neq \lambda_2$. It follows that $\langle \phi_1, \phi_2 \rangle = 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The main purpose of the Rayleigh quotient

Consider a functional (function on functions)

$$RQ[\phi] = \frac{-\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} \, ds + \iint_{D} |\nabla \phi|^2 \, dx \, dy}{\iint_{D} |\phi|^2 \, dx \, dy}.$$

If ϕ is an eigenfunction of $-\nabla^2$ in the domain D with some boundary condition, then $RQ[\phi]$ is the corresponding eigenvalue.

What if ϕ is not?

Let $\lambda_1 < \lambda_2 \le \lambda_3 \le \ldots \le \lambda_n \le \lambda_{n+1} \le \ldots$ be eigenvalues of a particular eigenvalue problem **counted with multiplicities**.

That is, a simple eigenvalue appears once in this sequence, an eigenvalue of multiplicity two appears twice, and so on.

There is a complete orthogonal system ϕ_1, ϕ_2, \ldots in the Hilbert space $L_2(D)$ such that ϕ_n is an eigenfunction belonging to λ_n .

Theorem (i) $\lambda_1 = \min RQ[\phi]$, where the minimum is taken over all nonzero functions ϕ which are differentiable in D and satisfy the boundary condition. Moreover, if $RQ[\phi] = \lambda_1$ then ϕ is an eigenfunction.

(ii) $\lambda_n = \min RQ[\phi]$, where the minimum is taken over all nonzero functions ϕ which are differentiable in *D*, satisfy the boundary condition, and such that $\langle \phi, \phi_k \rangle = 0$ for $1 \le k < n$. Moreover, the minimum is attained only on eigenfunctions.

Main idea of the proof: $RQ[\phi] = \frac{\langle -\nabla^2 \phi, \phi \rangle}{\langle \phi, \phi \rangle}$. (see Haberman 5.6)

Spectral properties of the Laplacian in a circle

Eigenvalue problem:

$$abla^2 \phi + \lambda \phi = 0 \quad \text{in} \quad D = \{(x, y) : x^2 + y^2 \le R^2\},\$$
 $u|_{\partial D} = 0.$

In polar coordinates (r, θ) :

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} + \lambda \phi = 0$$

$$(0 < r < R, -\pi < \theta < \pi),$$

 $\phi(R,\theta) = 0 \quad (-\pi < \theta < \pi).$

Additional boundary conditions:

 $ert \phi(\mathbf{0}, heta) ert < \infty \quad (-\pi < heta < \pi),$ $\phi(\mathbf{r}, -\pi) = \phi(\mathbf{r}, \pi), \quad \frac{\partial \phi}{\partial \theta}(\mathbf{r}, -\pi) = \frac{\partial \phi}{\partial \theta}(\mathbf{r}, \pi) \quad (\mathbf{0} < \mathbf{r} < \mathbf{R}).$

Separation of variables: $\phi(r, \theta) = f(r)h(\theta)$. Substitute this into the equation:

$$f''(r)h(\theta) + r^{-1}f'(r)h(\theta) + r^{-2}f(r)h''(\theta) + \lambda f(r)h(\theta) = 0.$$

Divide by $f(r)h(\theta)$ and multiply by r^2 :
$$\frac{r^2f''(r) + rf'(r) + \lambda r^2f(r)}{f(r)} + \frac{h''(\theta)}{h(\theta)} = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

It follows that

$$\frac{r^2 f''(r) + r f'(r) + \lambda r^2 f(r)}{f(r)} = -\frac{h''(\theta)}{h(\theta)} = \mu = \text{const.}$$

The variables have been separated:

$$egin{aligned} r^2 f'' + rf' + (\lambda r^2 - \mu)f &= 0, \ h'' &= -\mu h. \end{aligned}$$

Boundary conditions $\phi(R, \theta) = 0$ and $|\phi(0, \theta)| < \infty$ hold if f(R) = 0 and $|f(0)| < \infty$.

Boundary conditions $\phi(r, -\pi) = \phi(r, \pi)$ and $\frac{\partial \phi}{\partial \theta}(r, -\pi) = \frac{\partial \phi}{\partial \theta}(r, \pi)$ hold if $h(-\pi) = h(\pi)$ and $h'(-\pi) = h'(\pi)$. Eigenvalue problem:

$$h'' = -\mu h$$
, $h(-\pi) = h(\pi)$, $h'(-\pi) = h'(\pi)$.

Eigenvalues: $\mu_m = m^2$, m = 0, 1, 2, ... $\mu_0 = 0$ is simple, the others are of multiplicity 2.

Eigenfunctions: $h_0 = 1$, $h_m(\theta) = \cos m\theta$ and $\tilde{h}_m(\theta) = \sin m\theta$ for $m \ge 1$.

Dependence on *r*:

$$r^2 f'' + r f' + (\lambda r^2 - \mu) f = 0, \quad f(R) = 0, \ |f(0)| < \infty.$$

We may assume that $\mu = m^2$, m = 0, 1, 2, ...Also, we know that $\lambda > 0$ (Rayleigh quotient!).

New variable $z = \sqrt{\lambda} \cdot r$ removes dependence on λ :

$$z^2 \frac{d^2 f}{dz^2} + z \frac{df}{dz} + (z^2 - m^2)f = 0.$$

This is **Bessel's differential equation** of order *m*. Solutions are called **Bessel functions** of order *m*.