Math 412-501
Theory of Partial Differential Equations

Lecture 3-2:
Spectral properties of the Laplacian.
Bessel functions.



Eigenvalue problem:
V2p+Xp=0 in D,

(o ¢+5a(,f) =0

where «, 3 are piecewise continuous real functions
on OD such that |a| + |5| # 0 everywhere on 0D.

We assume that the boundary 9D is piecewise
smooth.



6 spectral properties of the Laplacian

Property 1. All eigenvalues are real.

Property 2. All eigenvalues can be arranged in
the ascending order

AM< <. .. <A <A1 <...

so that A\, — oo as n — oo.

This means that:

e there are infinitely many eigenvalues;

e there is a smallest eigenvalue;

e on any finite interval, there are only finitely
many eigenvalues.



Property 3. An eigenvalue A\, may be multiple
but its multiplicity is finite.

Moreover, the smallest eigenvalue A; is simple,
and the corresponding eigenfunction ¢; has no zeros
inside the domain D.

Property 4. Eigenfunctions corresponding to
different eigenvalues are orthogonal relative to the
inner product

(r.8) = [[ fix ety dedy.



Property 5. Any eigenfunction ¢ can be related
to its eigenvalue A through the Rayleigh quotient:

gb—ds+/ IV¢|? dx dy

/ |¢|* dx dy
D



Property 6. There exists a sequence ¢1, ¢y, ... of
pairwise orthogonal eigenfunctions that is complete

in the Hilbert space Ly(D).
Any square-integrable function f € Ly(D) is
expanded into a series

fx.y) = cadalx.y),
that converges in the mean. The series is unique:
__ (f.6
T fn On)

If f is piecewise smooth then the series converges
pointwise to f at points of continuity.




Rayleigh quotient

Suppose that V?¢ = —\¢ in the domain D.
Multiply both sides by ¢ and integrate over D:

//quv2gbdxdy:—)\/D|¢]2dxdy.

Green’s formula:

/wvngdA: zp—ds—/ Vi - Vo dA
D oD

This is an analog of integration by parts. Now

]{ gb—ds—// |V¢>|2dxdy_—)\// 9| dx dy.



It follows that
0¢ 2
— ¢ —ds + |V é|” dx dy
op  On D _

//D |6|? dx dy

If ¢ satisfies the boundary condition ¢|sp = 0 or
91 =0 (or mixed), then the one-dimensional

on oD
integral vanishes. In particular, A > 0.

If % + a¢ = 0 on 9D, then
— qb@ds :f o|¢|? ds.
op  On oD

In particular, if a > 0 everywhere on 9D, then \ > 0.

\ =




Self-adjointness
/ Y V3¢ dx dy = w—d —/ Vi - V¢ dx dy
D

(Green’s first identity)

//D(¢V2w—wv2¢)dxdy:éD(¢%_wa¢)

(Green’s second identity)
If  and 1) satisfy the same boundary condition
0¢ ’ o ’
(agb—I—ﬂ@n) ( ¢+68n)

then ?;/’ ‘% = 0 everywhere on 9D.



If ¢ and v satisfy the same boundary condition then
/ D(gb V2 — ¢ V2p) dx dy = 0.

If ¢ and v are complex-valued functions then also
[ [ ©¥7 -7 axay 0

(because V2¢) = V%) and 1) satisfies the same
boundary condition as ).

Thus (V2¢,v) = (¢, V*), where

(f,g) = // (x,y)g xydxdy



Eigenvalue problem:
V2o +Xd=0 in D,

(O‘¢+ﬂa¢) ‘ =0

n
The Laplacian V? is self-adjoint in the subspace of
functions satisfying the boundary condition.

Suppose ¢ is an eigenfunction belonging to an
eigenvalue \. Let us show that A € R.

Since V2¢ = —\¢, we have that
(V20,0) = (=), 0) = =\, ),
(6, V?0) = (6, —Ap) = =\, ).
Now (V2¢, ¢) = (¢, V?¢) and (¢, ¢) > 0 imply A € R.



Suppose ¢ and ¢, are eigenfunctions belonging to
different eigenvalues \; and \,.
Let us show that {¢1, o) = 0.

Since V2¢1 = =M1, V2h» = — X, we have that
(V201, ¢a) = (=M1, d2) = —A1{dh1, o),
(01, V20o) = (d1, —Nagha) = —Xo(¢1, P2).

But (V2¢1, ¢p) = (¢1, V2¢), hence
—A1{d1, d2) = —Xa{1, d2).

We already know that Ay = X\y. Also, A\; # .
It follows that (@1, ¢p) = 0.



The main purpose of the Rayleigh quotient

Consider a functional (function on functions)
— gb%dsnt// IV ¢|? dx dy
RQ[¢] — oD n D '
[ 100 axay
D

If ¢ is an eigenfunction of —V? in the domain D
with some boundary condition, then RQ[¢] is the
corresponding eigenvalue.

What if ¢ is not?



Let>\1<)\2§>\3§...§)\n§)\n+1§... be
eigenvalues of a particular eigenvalue problem
counted with multiplicities.

That is, a simple eigenvalue appears once in this
sequence, an eigenvalue of multiplicity two appears
twice, and so on.

There is a complete orthogonal system ¢1, ¢,... Iin
the Hilbert space Ly(D) such that ¢, is an
eigenfunction belonging to A,,.



Theorem (i) A\; = min RQ[¢], where the minimum
is taken over all nonzero functions ¢ which are
differentiable in D and satisfy the boundary
condition. Moreover, if RQ[¢] = A1 then ¢ is an
eigenfunction.

(i) A, = min RQ[¢], where the minimum is taken
over all nonzero functions ¢ which are differentiable
in D, satisfy the boundary condition, and such that
(¢, dk) = 0 for 1 < k < n. Moreover, the minimum
is attained only on eigenfunctions.

ERV.
Main idea of the proof: RQ[¢] = M

(¢, 0)
(see Haberman 5.6)



Spectral properties of the Laplacian in a circle

Eigenvalue problem:
V2p+Xp=0 in D={(x,y): x>+ y?> < R?},
ulsp = 0.
In polar coordinates (r, ):
2 2
% " 1 gqf T ge(f
(0<r<R, —mw<0<mn),

+Xp=0

O(R,0)=0 (—7<6b<m).



Additional boundary conditions:
16(0,0)] <oo (=7 <0 <m),
o(r,—m) = (r, ), 2(r,—7) = %(r,7) (0<r<R).
Separation of variables: ¢(r,8) = f(r)h(6).
Substitute this into the equation:
F'(r)h(0) + r=f'(r)h(0) + r=2f(r)h"(0) + Mf(r)h(6) = 0.
Divide by f(r)h(#) and multiply by r?:
r2f"(r) 4 r£'(r) + Ar2f(r) N h'(0)

") o)




It follows that
r*f"(r) +rf'(r) £ APf(r)  H'(0)
f(r) ~ h(9)
The variables have been separated:
r2f" 4+ rf' + (Ar? — u)f =0,
h'" = —puh.
Boundary conditions ¢(R,8) = 0 and |¢(0,0)| < oo
hold if f(R) =0 and |f(0)| < occ.
Boundary conditions ¢(r, —7) = ¢(r, ) and
%(r, —m) = %(r,w) hold if h(—m) = h(x) and
W(—mn) = h'(m).

= [t = const.



Eigenvalue problem:
W' = —uph, h(—7m) = h(r), H(—m) = h(r).

Eigenvalues: (i =m?, m=0,1,2,....
1o = 0 is simple, the others are of multiplicity 2.

Eigenfunctions: hy = 1, hn(6) = cos mf and
hm(6) = sin ml for m > 1.



Dependence on r:

rPf" 4 rf + (A —p)f =0, f(R)=0, |f(0)| < oo.
We may assume that = m? m=0,1,2
Also, we know that A > 0 (Rayleigh quotient!).

New variable z = v/\ - r removes dependence on \:
, d*f df
E—FZE—F(Z —m )f:().
This is Bessel’s differential equation of order m.
Solutions are called Bessel functions of order m.



