Math 412-501

Theory of Partial Differential Equations

Lecture 3-3: Bessel functions.

Spectral properties of the Laplacian in a circle

Eigenvalue problem:

$$
\begin{aligned}
& \nabla^{2} \phi+\lambda \phi=0 \text { in } D=\left\{(x, y): x^{2}+y^{2} \leq R^{2}\right\} \\
& \left.u\right|_{\partial D}=0
\end{aligned}
$$

In polar coordinates (r, θ) :

$$
\begin{aligned}
& \frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}+\lambda \phi=0 \\
& \\
& (0<r<R,-\pi<\theta<\pi) \\
& \phi(R, \theta)=0 \quad(-\pi<\theta<\pi)
\end{aligned}
$$

Additional boundary conditions:

$$
\begin{gathered}
|\phi(0, \theta)|<\infty \quad(-\pi<\theta<\pi), \\
\phi(r,-\pi)=\phi(r, \pi), \quad \frac{\partial \phi}{\partial \theta}(r,-\pi)=\frac{\partial \phi}{\partial \theta}(r, \pi) \quad(0<r<R) .
\end{gathered}
$$

Separation of variables: $\phi(r, \theta)=f(r) h(\theta)$.
Substitute this into the equation:
$f^{\prime \prime}(r) h(\theta)+r^{-1} f^{\prime}(r) h(\theta)+r^{-2} f(r) h^{\prime \prime}(\theta)+\lambda f(r) h(\theta)=0$.
Divide by $f(r) h(\theta)$ and multiply by r^{2} :

$$
\frac{r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\lambda r^{2} f(r)}{f(r)}+\frac{h^{\prime \prime}(\theta)}{h(\theta)}=0
$$

It follows that

$$
\frac{r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\lambda r^{2} f(r)}{f(r)}=-\frac{h^{\prime \prime}(\theta)}{h(\theta)}=\mu=\text { const. }
$$

The variables have been separated:

$$
\begin{gathered}
r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-\mu\right) f=0 \\
h^{\prime \prime}=-\mu h .
\end{gathered}
$$

Boundary conditions $\phi(R, \theta)=0$ and $|\phi(0, \theta)|<\infty$ hold if $f(R)=0$ and $|f(0)|<\infty$.
Boundary conditions $\phi(r,-\pi)=\phi(r, \pi)$ and $\frac{\partial \phi}{\partial \theta}(r,-\pi)=\frac{\partial \phi}{\partial \theta}(r, \pi)$ hold if $h(-\pi)=h(\pi)$ and $h^{\prime}(-\pi)=h^{\prime}(\pi)$.

Eigenvalue problem:

$$
h^{\prime \prime}=-\mu h, \quad h(-\pi)=h(\pi), h^{\prime}(-\pi)=h^{\prime}(\pi)
$$

Eigenvalues: $\mu_{m}=m^{2}, m=0,1,2, \ldots$ $\mu_{0}=0$ is simple, the others are of multiplicity 2 .

Eigenfunctions: $h_{0}=1, h_{m}(\theta)=\cos m \theta$ and $\tilde{h}_{m}(\theta)=\sin m \theta$ for $m \geq 1$.

Dependence on r :
$r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-\mu\right) f=0, \quad f(R)=0,|f(0)|<\infty$.
We may assume that $\mu=m^{2}, m=0,1,2, \ldots$
Also, we know that $\lambda>0$ (Rayleigh quotient!).
New variable $z=\sqrt{\lambda} \cdot r$ removes dependence on λ :

$$
\begin{aligned}
& \frac{d f}{d r}=\sqrt{\lambda} \frac{d f}{d z}, \quad \frac{d^{2} f}{d r^{2}}=\lambda \frac{d^{2} f}{d z^{2}} \\
& z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}+\left(z^{2}-m^{2}\right) f=0
\end{aligned}
$$

This is Bessel's differential equation of order m. Solutions are called Bessel functions of order m.

$$
z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}+\left(z^{2}-m^{2}\right) f=0
$$

Solutions are well behaved in the interval $(0, \infty)$.
Let f_{1} and f_{2} be linearly independent solutions.
Then the general solution is $f=c_{1} f_{1}+c_{2} f_{2}$, where c_{1}, c_{2} are constants.

We need to determine the behavior of solutions as $z \rightarrow 0$ and as $z \rightarrow \infty$.

In a neighborhood of 0 , Bessel's equation is a small perturbation of the equidimensional equation

$$
z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}-m^{2} f=0
$$

Equidimensional equation:

$$
z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}-m^{2} f=0
$$

For $m>0$, the general solution is $f(z)=c_{1} z^{m}+c_{2} z^{-m}$, where c_{1}, c_{2} are constants.
For $m=0$, the general solution is $f(z)=c_{1}+c_{2} \log z$, where c_{1}, c_{2} are constants.

We hope that Bessel functions are close to solutions of the equidimensional equation as $z \rightarrow 0$.

Theorem For any $m>0$ there exist Bessel
functions f_{1} and f_{2} of order m such that

$$
f_{1}(z) \sim z^{m} \text { and } f_{2}(z) \sim z^{-m} \text { as } z \rightarrow 0
$$

Also, there exist Bessel functions f_{1} and f_{2} of order 0 such that

$$
f_{1}(z) \sim 1 \text { and } f_{2}(z) \sim \log z \text { as } z \rightarrow 0
$$

Remarks. (i) f_{1} and f_{2} are linearly independent.
(ii) f_{1} is determined uniquely while f_{2} is not.
$J_{m}(z)$: Bessel function of the first kind, $Y_{m}(z)$: Bessel function of the second kind.
$J_{m}(z)$ and $Y_{m}(z)$ are certain linearly independent Bessel functions of order m.
$J_{m}(z)$ is regular while $Y_{m}(z)$ has singularity at 0 . $J_{m}(z)$ and $Y_{m}(z)$ are special functions.

As $z \rightarrow 0$, we have for $m>0$

$$
J_{m}(z) \sim \frac{1}{2^{m} m!} z^{m}, \quad Y_{m}(z) \sim-\frac{2^{m}(m-1)!}{\pi} z^{-m} .
$$

Also, $J_{0}(z) \sim 1, \quad Y_{0}(z) \sim \frac{2}{\pi} \log z$.
$J_{m}(z)$ is uniquely determined by its asymptotics as $z \rightarrow 0$. Original definition by Bessel:

$$
J_{m}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin \tau-m \tau) d \tau
$$

Behavior of the Bessel functions as $z \rightarrow \infty$ does not depend on the order m. Any Bessel function f satisfy

$$
f(z)=A z^{-1 / 2} \cos (z-B)+O\left(z^{-1}\right) \text { as } z \rightarrow \infty,
$$

where A, B are constants.
The function f is uniquely determined by A, B, and its order m.

As $z \rightarrow \infty$, we have

$$
\begin{aligned}
& J_{m}(z)=\sqrt{\frac{2}{\pi z}} \cos \left(z-\frac{\pi}{4}-\frac{m \pi}{2}\right)+O\left(z^{-1}\right) \\
& Y_{m}(z)=\sqrt{\frac{2}{\pi z}} \sin \left(z-\frac{\pi}{4}-\frac{m \pi}{2}\right)+O\left(z^{-1}\right)
\end{aligned}
$$

Let $0<j_{m, 1}<j_{m, 2}<\ldots$ be zeros of $J_{m}(z)$ and $0<y_{m, 1}<y_{m, 2}<\ldots$ be zeros of $Y_{m}(z)$.
Then the zeros are interlaced:

$$
m<y_{m, 1}<j_{m, 1}<y_{m, 2}<j_{m, 2}<\ldots .
$$

Asymptotics of the nth zeros as $n \rightarrow \infty$:

$$
j_{m, n} \sim\left(n+\frac{1}{2} m-\frac{1}{4}\right) \pi, \quad y_{m, n} \sim\left(n+\frac{1}{2} m-\frac{3}{4}\right) \pi .
$$

Eigenvalues of the Laplacian in a circle

Intermediate eigenvalue problem:
$r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-m^{2}\right) f=0, \quad f(R)=0,|f(0)|<\infty$.
New variable $z=\sqrt{\lambda} \cdot r$ reduced the equation to
Bessel's equation of order m. Hence the general solution is $f(r)=c_{1} J_{m}(\sqrt{\lambda} r)+c_{2} Y_{m}(\sqrt{\lambda} r)$, where c_{1}, c_{2} are constants.

Singular condition $|f(0)|<\infty$ holds if $c_{2}=0$. Nonzero solution exists if $J_{m}(\sqrt{\lambda} R)=0$.

Thus there are infinitely many eigenvalues $\lambda_{m, 1}, \lambda_{m, 2}, \ldots$, where $\sqrt{\lambda_{m, n}} R=j_{m, n}$, i.e., $\lambda_{m, n}=\left(j_{m, n} / R\right)^{2}$.

Summary

Eigenvalue problem:

$$
\begin{aligned}
& \nabla^{2} \phi+\lambda \phi=0 \text { in } D=\left\{(x, y): x^{2}+y^{2} \leq R^{2}\right\} \\
& \left.u\right|_{\partial D}=0
\end{aligned}
$$

Eigenvalues: $\quad \lambda_{m, n}=\left(j_{m, n} / R\right)^{2}$, where $m=0,1,2, \ldots, n=1,2, \ldots$, and $j_{m, n}$ is the nth zero of the Bessel function J_{m}.
Eigenfunctions: $\quad \phi_{0, n}(r, \theta)=J_{0}\left(j_{0, n} r / R\right)$.
For $m \geq 1, \phi_{m, n}(r, \theta)=J_{m}\left(j_{m, n} r / R\right) \cos m \theta$ and $\tilde{\phi}_{m, n}(r, \theta)=J_{m}\left(j_{m, n} r / R\right) \sin m \theta$.

