Math 412-501 Theory of Partial Differential Equations Lecture 3-3: Bessel functions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spectral properties of the Laplacian in a circle

Eigenvalue problem:

$$abla^2 \phi + \lambda \phi = 0 \quad \text{in} \quad D = \{(x, y) : x^2 + y^2 \le R^2\},\$$
 $u|_{\partial D} = 0.$

In polar coordinates (r, θ) :

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} + \lambda \phi = 0$$

$$(0 < r < R, -\pi < \theta < \pi),$$

 $\phi(R,\theta) = 0 \quad (-\pi < \theta < \pi).$

Additional boundary conditions:

$$egin{aligned} &|\phi(0, heta)| < \infty \quad (-\pi < heta < \pi), \ &\phi(r,-\pi) = \phi(r,\pi), \ \ rac{\partial \phi}{\partial heta}(r,-\pi) = rac{\partial \phi}{\partial heta}(r,\pi) \quad (0 < r < R). \end{aligned}$$

Separation of variables: $\phi(r, \theta) = f(r)h(\theta)$. Substitute this into the equation:

$$f''(r)h(\theta) + r^{-1}f'(r)h(\theta) + r^{-2}f(r)h''(\theta) + \lambda f(r)h(\theta) = 0.$$

Divide by $f(r)h(\theta)$ and multiply by r^2 : $\frac{r^2 f''(r) + r f'(r) + \lambda r^2 f(r)}{f(r)} + \frac{h''(\theta)}{h(\theta)} = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

It follows that

$$\frac{r^2 f''(r) + r f'(r) + \lambda r^2 f(r)}{f(r)} = -\frac{h''(\theta)}{h(\theta)} = \mu = \text{const.}$$

The variables have been separated:

$$egin{aligned} r^2 f'' + rf' + (\lambda r^2 - \mu)f &= 0, \ h'' &= -\mu h. \end{aligned}$$

Boundary conditions $\phi(R, \theta) = 0$ and $|\phi(0, \theta)| < \infty$ hold if f(R) = 0 and $|f(0)| < \infty$.

Boundary conditions $\phi(r, -\pi) = \phi(r, \pi)$ and $\frac{\partial \phi}{\partial \theta}(r, -\pi) = \frac{\partial \phi}{\partial \theta}(r, \pi)$ hold if $h(-\pi) = h(\pi)$ and $h'(-\pi) = h'(\pi)$. Eigenvalue problem:

$$h'' = -\mu h$$
, $h(-\pi) = h(\pi)$, $h'(-\pi) = h'(\pi)$.

Eigenvalues: $\mu_m = m^2$, m = 0, 1, 2, ... $\mu_0 = 0$ is simple, the others are of multiplicity 2.

Eigenfunctions: $h_0 = 1$, $h_m(\theta) = \cos m\theta$ and $\tilde{h}_m(\theta) = \sin m\theta$ for $m \ge 1$.

Dependence on r:

 $r^2 f'' + r f' + (\lambda r^2 - \mu) f = 0, \quad f(R) = 0, \ |f(0)| < \infty.$

We may assume that $\mu = m^2$, m = 0, 1, 2, ...Also, we know that $\lambda > 0$ (Rayleigh quotient!).

New variable $z = \sqrt{\lambda} \cdot r$ removes dependence on λ :

$$rac{df}{dr} = \sqrt{\lambda} \, rac{df}{dz}, \qquad rac{d^2 f}{dr^2} = \lambda \, rac{d^2 f}{dz^2}$$

$$z^2 \frac{d^2 f}{dz^2} + z \frac{df}{dz} + (z^2 - m^2)f = 0$$

This is **Bessel's differential equation** of order *m*. Solutions are called **Bessel functions** of order *m*.

$$z^{2}\frac{d^{2}f}{dz^{2}} + z\frac{df}{dz} + (z^{2} - m^{2})f = 0$$

Solutions are well behaved in the interval $(0, \infty)$. Let f_1 and f_2 be linearly independent solutions. Then the general solution is $f = c_1 f_1 + c_2 f_2$, where c_1, c_2 are constants.

We need to determine the behavior of solutions as $z \rightarrow 0$ and as $z \rightarrow \infty$.

In a neighborhood of 0, Bessel's equation is a small perturbation of the equidimensional equation

$$z^2\frac{d^2f}{dz^2}+z\frac{df}{dz}-m^2f=0.$$

Equidimensional equation:

$$z^2\frac{d^2f}{dz^2}+z\frac{df}{dz}-m^2f=0.$$

For m > 0, the general solution is $f(z) = c_1 z^m + c_2 z^{-m}$, where c_1, c_2 are constants. For m = 0, the general solution is $f(z) = c_1 + c_2 \log z$, where c_1, c_2 are constants.

We hope that Bessel functions are close to solutions of the equidimensional equation as $z \rightarrow 0$.

Theorem For any m > 0 there exist Bessel functions f_1 and f_2 of order m such that

$$f_1(z)\sim z^m$$
 and $f_2(z)\sim z^{-m}$ as $z
ightarrow 0.$

Also, there exist Bessel functions f_1 and f_2 of order 0 such that

$$f_1(z) \sim 1$$
 and $f_2(z) \sim \log z$ as $z \to 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Remarks. (i) f_1 and f_2 are linearly independent. (ii) f_1 is determined uniquely while f_2 is not. $J_m(z)$: Bessel function of the first kind, $Y_m(z)$: Bessel function of the second kind. $J_m(z)$ and $Y_m(z)$ are certain linearly independent Bessel functions of order m. $J_m(z)$ is regular while $X_m(z)$ has singularity at 0.

 $J_m(z)$ is regular while $Y_m(z)$ has singularity at 0. $J_m(z)$ and $Y_m(z)$ are **special functions**.

As
$$z \to 0$$
, we have for $m > 0$
 $J_m(z) \sim \frac{1}{2^m m!} z^m$, $Y_m(z) \sim -\frac{2^m (m-1)!}{\pi} z^{-m}$.
Also, $J_0(z) \sim 1$, $Y_0(z) \sim \frac{2}{\pi} \log z$.

 $J_m(z)$ is uniquely determined by its asymptotics as $z \rightarrow 0$. Original definition by Bessel:

$$J_m(z) = \frac{1}{\pi} \int_0^{\pi} \cos(z \sin \tau - m\tau) d\tau.$$

Behavior of the Bessel functions as $z \to \infty$ does not depend on the order *m*. Any Bessel function *f* satisfy

$$f(z)=Az^{-1/2}\cos(z-B)+O(z^{-1})$$
 as $z
ightarrow\infty$,

where A, B are constants.

The function f is uniquely determined by A, B, and its order m.

As $z \to \infty$, we have

0 Т

$$J_m(z) = \sqrt{\frac{2}{\pi z}} \cos\left(z - \frac{\pi}{4} - \frac{m\pi}{2}\right) + O(z^{-1}),$$

$$Y_m(z) = \sqrt{\frac{2}{\pi z}} \sin\left(z - \frac{\pi}{4} - \frac{m\pi}{2}\right) + O(z^{-1}).$$

Let $0 < j_{m,1} < j_{m,2} < \dots$ be zeros of $J_m(z)$ and
 $0 < y_{m,1} < y_{m,2} < \dots$ be zeros of $Y_m(z)$.
Then the zeros are interlaced:

$$m < y_{m,1} < j_{m,1} < y_{m,2} < j_{m,2} < \ldots$$

Asymptotics of the *n*th zeros as $n \to \infty$:

$$j_{m,n} \sim (n + \frac{1}{2}m - \frac{1}{4})\pi$$
, $y_{m,n} \sim (n + \frac{1}{2}m - \frac{3}{4})\pi$.

Eigenvalues of the Laplacian in a circle

Intermediate eigenvalue problem: $r^2 f'' + rf' + (\lambda r^2 - m^2)f = 0$, f(R) = 0, $|f(0)| < \infty$. New variable $z = \sqrt{\lambda} \cdot r$ reduced the equation to Bessel's equation of order m. Hence the general solution is $f(r) = c_1 J_m(\sqrt{\lambda} r) + c_2 Y_m(\sqrt{\lambda} r)$, where c_1, c_2 are constants.

Singular condition $|f(0)| < \infty$ holds if $c_2 = 0$. Nonzero solution exists if $J_m(\sqrt{\lambda} R) = 0$.

Thus there are infinitely many eigenvalues $\lambda_{m,1}, \lambda_{m,2}, \ldots$, where $\sqrt{\lambda_{m,n}} R = j_{m,n}$, i.e., $\lambda_{m,n} = (j_{m,n}/R)^2$.

Summary

Eigenvalue problem:

$$abla^2 \phi + \lambda \phi = 0$$
 in $D = \{(x, y) : x^2 + y^2 \le R^2\},$
 $u|_{\partial D} = 0.$

Eigenvalues: $\lambda_{m,n} = (j_{m,n}/R)^2$, where m = 0, 1, 2, ..., n = 1, 2, ..., and $j_{m,n}$ is the *n*th zero of the Bessel function J_m .

Eigenfunctions: $\phi_{0,n}(r,\theta) = J_0(j_{0,n}r/R).$ For $m \ge 1$, $\phi_{m,n}(r,\theta) = J_m(j_{m,n}r/R) \cos m\theta$ and $\tilde{\phi}_{m,n}(r,\theta) = J_m(j_{m,n}r/R) \sin m\theta.$