Math 412-501 Theory of Partial Differential Equations Lecture 3-4: Applications of Bessel functions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bessel's differential equation of order $m \ge 0$:

$$z^2 \frac{d^2 f}{dz^2} + z \frac{df}{dz} + (z^2 - m^2)f = 0$$

The equation is considered on the interval $(0, \infty)$. Solutions are called **Bessel functions** of order *m*.

- $J_m(z)$: Bessel function of the first kind,
- $Y_m(z)$: Bessel function of the second kind.
- $J_m(z)$ is regular while $Y_m(z)$ has a singularity at 0.
- The general Bessel function of order *m* is $f(z) = c_1 J_m(z) + c_2 Y_m(z)$, where c_1, c_2 are constants.

Asymptotics at the origin

As $z \rightarrow 0$, we have for any integer m > 0

$$J_m(z) \sim rac{1}{2^m \, m!} z^m, \quad Y_m(z) \sim -rac{2^m (m-1)!}{\pi} z^{-m}.$$

Also, $J_0(z) \sim 1, \quad Y_0(z) \sim rac{2}{\pi} \log z.$

To get the asymptotics for a noninteger m, we replace m! by $\Gamma(m+1)$ and (m-1)! by $\Gamma(m)$. $J_m(z)$ is uniquely determined by this asymptotics while $Y_m(z)$ is not.

Asymptotics at infinity

As
$$z \to \infty$$
, we have

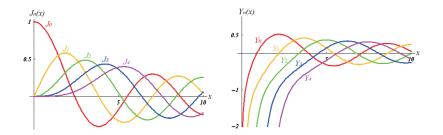
$$J_m(z) = \sqrt{\frac{2}{\pi z}} \cos\left(z - \frac{\pi}{4} - \frac{m\pi}{2}\right) + O(z^{-1}),$$
$$Y_m(z) = \sqrt{\frac{2}{\pi z}} \sin\left(z - \frac{\pi}{4} - \frac{m\pi}{2}\right) + O(z^{-1}).$$

Both $J_m(z)$ and $Y_m(z)$ are uniquely determined by this asymptotics.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

æ



< □ > < @ > < E > < E >

æ

Zeros

Let $0 < j_{m,1} < j_{m,2} < \dots$ be zeros of $J_m(z)$ and $0 < y_{m,1} < y_{m,2} < \dots$ be zeros of $Y_m(z)$. Then the zeros are interlaced:

$$m < y_{m,1} < j_{m,1} < y_{m,2} < j_{m,2} < \ldots$$

Asymptotics of the *n*th zeros as $n \to \infty$:

$$j_{m,n} \sim (n + \frac{1}{2}m - \frac{1}{4})\pi$$
, $y_{m,n} \sim (n + \frac{1}{2}m - \frac{3}{4})\pi$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dirichlet Laplacian in a circle

Eigenvalue problem:

$$abla^2 \phi + \lambda \phi = 0$$
 in $D = \{(x, y) : x^2 + y^2 \leq R^2\}$,
 $u|_{\partial D} = 0$.

Separation of variables in polar coordinates:

 $\phi(r, \theta) = f(r)h(\theta)$. Reduces the problem to two one-dimensional eigenvalue problems:

$$f^{2}f'' + rf' + (\lambda r^{2} - \mu)f = 0, \quad f(R) = 0, |f(0)| < \infty;$$

 $h'' = -\mu h, \quad h(-\pi) = h(\pi), h'(-\pi) = h'(\pi).$
The latter problem has eigenvalues $\mu_{m} = m^{2}$,

 $m = 0, 1, 2, ..., \text{ and eigenfunctions } h_0 = 1, \ h_m(heta) = \cos m heta, \ ilde{h}_m(heta) = \sin m heta, \ m \ge 1.$

The 1st intermediate eigenvalue problem:

 $r^{2}f'' + rf' + (\lambda r^{2} - m^{2})f = 0, \quad f(R) = 0, |f(0)| < \infty.$ New variable $z = \sqrt{\lambda} \cdot r$ reduces the equation to Bessel's equation of order m. Hence the general solution is $f(r) = c_1 J_m(\sqrt{\lambda} r) + c_2 Y_m(\sqrt{\lambda} r)$, where c_1, c_2 are constants. Singular condition $|f(0)| < \infty$ holds if $c_2 = 0$. Nonzero solution exists if $J_m(\sqrt{\lambda} R) = 0$.

Thus there are infinitely many eigenvalues $\lambda_{m,1}, \lambda_{m,2}, \ldots$, where $\sqrt{\lambda_{m,n}} R = j_{m,n}$, i.e., $\lambda_{m,n} = (j_{m,n}/R)^2$. Corresponding eigenfunctions: $f_{m,n}(r) = J_m(j_{m,n} r/R)$. The 1st intermediate eigenvalue problem: $r^2 f'' + rf' + (\lambda r^2 - m^2)f = 0, \quad f(R) = 0, |f(0)| < \infty.$

Divide the equation by r:

$$rf'' + f' + (\lambda r - m^2 r^{-1})f = 0.$$

This is equivalent to

$$(rf')' + (\lambda r - m^2 r^{-1})f = 0.$$

Thus this is a Sturm-Liouville eigenvalue problem. Although the problem is not regular, all 6 properties of a regular problem are valid. In particular, the eigenfunctions $f_{m,n}(r) = J_m(j_{m,n} r/R)$ are orthogonal relative to the inner product

$$\langle f,g\rangle_r=\int_0^R f(r)\overline{g(r)}\,r\,dr.$$

Any function g such that $\int_0^R |g(r)|^2 r \, dr < \infty$ is expanded into a **Fourier-Bessel series**

$$g(r) = \sum_{n=1}^{\infty} c_n J_m(j_{m,n} r/R)$$

that converges in the mean (with weight r). If g is piecewise smooth, then the series converges at its points of continuity.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへぐ

The coefficients are given by $c_n = \frac{\langle g, f_{m,n} \rangle_r}{\langle f_{m,n}, f_{m,n} \rangle_r}$.

Eigenvalue problem:

$$abla^2 \phi + \lambda \phi = 0$$
 in $D = \{(x, y) : x^2 + y^2 \le R^2\},\ u|_{\partial D} = 0.$

Eigenvalues: $\lambda_{m,n} = (j_{m,n}/R)^2$, where m = 0, 1, 2, ..., n = 1, 2, ..., and $j_{m,n}$ is the *n*th positive zero of the Bessel function J_m .

Eigenfunctions: $\phi_{0,n}(r,\theta) = J_0(j_{0,n}r/R).$ For $m \ge 1$, $\phi_{m,n}(r,\theta) = J_m(j_{m,n}r/R) \cos m\theta$ and $\tilde{\phi}_{m,n}(r,\theta) = J_m(j_{m,n}r/R) \sin m\theta.$

Neumann Laplacian in a circle

Eigenvalue problem:

$$\nabla^2 \phi + \lambda \phi = 0 \text{ in } D = \{(x, y) : x^2 + y^2 \le R^2\},\$$
$$\frac{\partial u}{\partial n}\Big|_{\partial D} = 0.$$

Again, separation of variables in polar coordinates, $\phi(r, \theta) = f(r)h(\theta)$, reduces the problem to two one-dimensional eigenvalue problems:

$$r^{2}f'' + rf' + (\lambda r^{2} - \mu)f = 0, \quad f'(R) = 0, |f(0)| < \infty;$$

 $h'' = -\mu h, \quad h(-\pi) = h(\pi), h'(-\pi) = h'(\pi).$
The 2nd problem has eigenvalues $\mu_{m} = m^{2},$

$$m = 0, 1, 2, ..., \text{ and eigenfunctions } n_0 = 1,$$

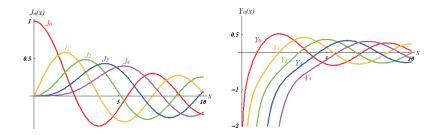
 $h_m(\theta) = \cos m\theta, \ \tilde{h}_m(\theta) = \sin m\theta, \ m \ge 1.$

The 1st one-dimensional eigenvalue problem:

$$r^{2}f'' + rf' + (\lambda r^{2} - m^{2})f = 0$$
, $f'(R) = 0$, $|f(0)| < \infty$.
For $\lambda > 0$, the general solution of the equation is $f(r) = c_{1}J_{m}(\sqrt{\lambda}r) + c_{2}Y_{m}(\sqrt{\lambda}r)$, where c_{1}, c_{2} are constants.

- Singular condition $|f(0)| < \infty$ holds if $c_2 = 0$. Nonzero solution exists if $J'_m(\sqrt{\lambda} R) = 0$.
- Thus there are infinitely many eigenvalues $\lambda_{m,1}, \lambda_{m,2}, \ldots$, where $\sqrt{\lambda_{m,n}} R = j'_{m,n}$, i.e., $\lambda_{m,n} = (j'_{m,n}/R)^2$. Corresponding eigenfunctions: $f_{m,n}(r) = J_m(j'_{m,n} r/R)$. $\lambda = 0$ is an eigenvalue only for m = 0.

Bessel functions of the 1st and 2nd kind



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Zeros of Bessel functions

Let
$$0 < j_{m,1} < j_{m,2} < \dots$$
 be zeros of $J_m(z)$ and
 $0 < y_{m,1} < y_{m,2} < \dots$ be zeros of $Y_m(z)$.
Let $0 \le j'_{m,1} < j'_{m,2} < \dots$ be zeros of $J'_m(z)$ and
 $0 < y'_{m,1} < y'_{m,2} < \dots$ be zeros of $Y'_m(z)$.
(We let $j'_{0,1} = 0$ while $j'_{m,1} > 0$ if $m > 0$.)
Then the zeros are interlaced:

$$m \leq j'_{m,1} < y_{m,1} < y'_{m,1} < j_{m,1} < < j'_{m,2} < y_{m,2} < y'_{m,2} < j_{m,2} < \dots$$

Asymptotics of the *n*th zeros as $n \to \infty$:

$$j'_{m,n} \approx y_{m,n} \sim (n + \frac{1}{2}m - \frac{3}{4})\pi,$$

 $y'_{m,n} \approx j_{m,n} \sim (n + \frac{1}{2}m - \frac{1}{4})\pi.$

Eigenvalue problem:

$$\nabla^2 \phi + \lambda \phi = 0 \text{ in } D = \{(x, y) : x^2 + y^2 \le R^2\},\$$
$$\frac{\partial u}{\partial n}\Big|_{\partial D} = 0.$$

Eigenvalues: $\lambda_{m,n} = (j'_{m,n}/R)^2$, where $m = 0, 1, 2, \ldots, n = 1, 2, \ldots$, and $j'_{m,n}$ is the *n*th positive zero of J'_m (exception: $j'_{0,1} = 0$). **Eigenfunctions:** $\phi_{0,n}(r,\theta) = J_0(j'_{0,n}r/R)$. In particular, $\phi_{0,1} = 1$. For $m \geq 1$, $\phi_{m,n}(r,\theta) = J_m(j'_{m,n}r/R) \cos m\theta$ and $\hat{\phi}_{m,n}(r,\theta) = J_m(j'_{m,n}r/R)\sin m\theta.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Laplacian in a circular sector

Eigenvalue problem:

$$\nabla^2 \phi + \lambda \phi = 0$$
 in $D = \{(r, \theta) : r < R, 0 < \theta < L\},\ u|_{\partial D} = 0.$

Again, separation of variables in polar coordinates, $\phi(r, \theta) = f(r)h(\theta)$, reduces the problem to two one-dimensional eigenvalue problems:

$$r^{2}f'' + rf' + (\lambda r^{2} - \mu)f = 0, \quad f(0) = f(R) = 0;$$

 $h'' = -\mu h, \quad h(0) = h(L) = 0.$

The 2nd problem has eigenvalues $\mu_m = (\frac{m\pi}{L})^2$, m = 1, 2, ..., and eigenfunctions $h_m(\theta) = \sin \frac{m\pi\theta}{L}$.

The 1st one-dimensional eigenvalue problem:

$$r^{2}f'' + rf' + (\lambda r^{2} - \nu^{2})f = 0, \quad f(0) = f(R) = 0.$$

Here
$$\nu^2 = \mu_m$$
. We may assume that $\lambda > 0$.
The general solution of the equation is
 $f(r) = c_1 J_{\nu}(\sqrt{\lambda} r) + c_2 Y_{\nu}(\sqrt{\lambda} r)$, where c_1, c_2 are constants.

Boundary condition f(0) = 0 holds if $c_2 = 0$. Nonzero solution exists if $J_{\nu}(\sqrt{\lambda} R) = 0$.

Thus there are infinitely many eigenvalues $\lambda_{m,1}, \lambda_{m,2}, \ldots$, where $\sqrt{\lambda_{m,n}} R = j_{\nu,n}$, i.e., $\lambda_{m,n} = (j_{\nu,n}/R)^2$. Corresponding eigenfunctions: $f_{m,n}(r) = J_{\nu}(j_{\nu,n}r/R)$. Note that $\nu = m\pi/L$.

Eigenvalue problem:

 $\nabla^2 \phi + \lambda \phi = 0 \quad \text{in} \quad D = \{(r, \theta) : r < R, \ 0 < \theta < L\},\ u|_{\partial D} = 0.$

Eigenvalues: $\lambda_{m,n} = (j_{\frac{m\pi}{L},n}/R)^2$, where $m = 1, 2, ..., n = 1, 2, ..., \text{ and } j_{\frac{m\pi}{L},n}$ is the *n*th positive zero of the Bessel function $J_{\frac{m\pi}{L}}$.

Eigenfunctions:

 $\phi_{m,n}(r,\theta) = J_{\frac{m\pi}{L}}(j_{\frac{m\pi}{L},n} \cdot r/R) \sin \frac{m\pi\theta}{L}.$