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Theory of Partial Differential Equations

Lecture 3-6: Nonhomogeneous problems.

Method of eigenfunction expansion.



Nonhomogeneous boundary conditions

Initial-boundary value problem for the heat equation:

∂u

∂t
= k

∂2u

∂x2
(0 < x < L),

u(0, t) = A,

u(L, t) = B ,

u(x , 0) = f (x) (0 < x < L).

Our goal is to reduce this problem to an analogous
one with homogeneous boundary conditions.



Suppose u0(x , t) is a solution of the equation that
satisfies the boundary conditions.

Consider w(x , t) = u(x , t) − u0(x , t).

u and u0 are solutions of the heat equation
=⇒ w = u − u0 is also a solution

u and u0 satisfy the same boundary conditions
=⇒ w = u − u0 satisfies homogeneous BCs

w(x , t) is a solution of the following problem:

∂w

∂t
= k

∂2w

∂x2
(0 < x < L),

w(0, t) = w(L, t) = 0,

w(x , 0) = g(x), where g(x) = f (x) − u0(x , 0).



How do we find a solution u0(x , t)?

Steady-state (or equilibrium) solution:
u0(x , t) = u0(x).

u0(x) is a solution of the boundary value problem

d2u0

dx2
= 0, u0(0) = A, u0(L) = B .

The general solution of the equation is
u0(x) = c1x + c2, where c1, c2 are constants.

Boundary conditions are satisfied if

u0(x) = A +
B − A

L
x .



Initial-boundary value problem:

∂u

∂t
= k

∂2u

∂x2
(0 < x < L),

u(0, t) = A, u(L, t) = B ,

u(x , 0) = f (x) (0 < x < L).

Solution: u(x , t) = u0(x) + w(x , t)

= A +
B − A

L
x +

∞∑

n=1

bn exp
(
−(nπ/L)2kt

)
sin

nπx

L
,

where bn are coefficients of the Fourier sine series
on [0, L] of the function g(x) = f (x) − A − B−A

L
x .



Heat equation with sources:

∂u

∂t
= k

∂2u

∂x2
+ Q(x) (0 < x < L),

u(0, t) = A, u(L, t) = B ,

u(x , 0) = f (x) (0 < x < L).

Suppose u0(x , t) = u0(x) is an equilibrium solution.

Then w(x , t) = u(x , t) − u0(x) is a solution of the
homogeneous heat equation with homogeneous
boundary conditions.



Solution: u(x , t) = u0(x) + w(x , t),

where u0 is the solution of the boundary value
problem

k
d2u0

dx2
+ Q(x) = 0, u0(0) = A, u0(L) = B ;

and w(x , t) is the solution of the initial-boundary
value problem

∂w

∂t
= k

∂2w

∂x2
(0 < x < L),

w(0, t) = w(L, t) = 0,

w(x , 0) = f (x) − u0(x).



For some boundary conditions, there is no
equilibrium solution. Besides, there is no equilibrium
solution if the boundary conditions or the sources
depend on time.

Time-dependent problem:

∂u

∂t
= k

∂2u

∂x2
+ Q(x , t) (0 < x < L),

u(0, t) = A(t), u(L, t) = B(t) (t > 0),

u(x , 0) = f (x) (0 < x < L).

We can still reduce the problem to an analogous
one with homogeneous boundary conditions.



Suppose u0(x , t) is a smooth function satisfying the
boundary conditions (not necessarily a solution of
the PDE). For example,

u0(x , t) = A(t) +
B(t) − A(t)

L
x .

Then w(x , t) = u(x , t) − u0(x , t) satisfies
homogeneous boundary conditions.
Substitute u = u0 + w into the equation:

∂(u0 + w)

∂t
= k

∂2(u0 + w)

∂x2
+ Q(x , t),

∂w

∂t
= k

∂2w

∂x2
+

(
Q(x , t) −

∂u0

∂t
+ k

∂2u0

∂x2

)
.

Also, w(x , 0) = f (x) − u0(x , 0).



Solution: u(x , t) = u0(x , t) + w(x , t),

where

u0(x , t) = A(t) +
B(t) − A(t)

L
x

and w(x , t) is the solution of the initial-boundary
value problem

∂w

∂t
= k

∂2w

∂x2
+ Q̃(x , t) (0 < x < L),

w(0, t) = w(L, t) = 0,

w(x , 0) = g(x) (0 < x < L),

in which Q̃(x , t) = Q(x , t) − ∂u0

∂t
+ k ∂u0

∂x2 ,
g(x) = f (x) − u0(x , 0).



Method of eigenfunction expansion

Initial-boundary value problem:

∂u

∂t
= k

∂2u

∂x2
+ Q(x , t) (0 < x < L),

u(0, t) = u(L, t) = 0,

u(x , 0) = f (x) (0 < x < L).

Consider the related eigenvalue problem

φ′′ = −λφ, φ(0) = φ(L) = 0.

The eigenvalues are λn = (nπ

L
)2, n = 1, 2, . . . ,

and the corresponding eigenfunctions are
φn(x) = sin nπx

L
.



Any piecewise smooth function on [0, L] can be
expanded into the Fourier sine series. In particular,

u(x , t) =
∑∞

n=1
an(t)φn(x),

where a1(t), a2(t), . . . are some functions.

Let us assume that the series can be differentiated
term-by-term (one can show this; an important
reason is that u(x , t) satisfies homogeneous
boundary conditions). Then

∂u

∂t
=

∑∞

n=1
a′

n
(t)φn(x),

∂2u

∂x2
=

∑∞

n=1
an(t)φ

′′
n
(x) = −

∑∞

n=1
λnan(t)φn(x).



Also, Q(x , t) =
∑∞

n=1
qn(t)φn(x),

f (x) =
∑∞

n=1
bnφn(x).

Substitute all series into the equation:
∑∞

n=1
a′

n
(t)φn(x) =

= −k
∑∞

n=1
λnan(t)φn(x) +

∑∞

n=1
qn(t)φn(x),

∑∞

n=1

(
a′

n
(t) + kλnan(t) − qn(t)

)
φn(x) = 0.

Initial condition is satisfied if∑∞

n=1
an(0)φn(x) =

∑∞

n=1
bnφn(x).



It follows that for any n ≥ 1 we have

a′
n
(t) + kλnan(t) = qn(t), an(0) = bn.

This is an initial value problem for an.

Multiply both sides of the ODE by eλnkt :

eλnkta′
n
(t) + kλne

λnktan(t) = eλnktqn(t),
(
eλnktan(t)

)′
= eλnktqn(t),

eλnktan(t) − an(0) =

∫
t

0

eλnkτqn(τ) dτ ,

an(t) = bne
−λnkt + e−λnkt

∫
t

0

eλnkτqn(τ) dτ .



Solution: u(x , t) =
∑∞

n=1
an(t) sin

nπx

L
,

where

an(t) = bne
−λnkt + e−λnkt

∫
t

0

eλnkτqn(τ) dτ ,

λn = (nπ/L)2,

bn =
〈f , φn〉

〈φn, φn〉
=

2

L

∫
L

0

f (ξ) sin
nπξ

L
dξ,

qn(τ) =
〈Q(·, τ), φn〉

〈φn, φn〉
=

2

L

∫
L

0

Q(ξ, τ) sin
nπξ

L
dξ.

If Q = 0 then u(x , t) =
∑∞

n=1
bne

−λnktφn(x),

just as the separation of variables yields.



Poisson’s equation

Poisson’s equation is a nonhomogeneous version of
Laplace’s equation: ∇2u = Q.

Consider a boundary value problem:

∇2u = Q in the domain D,

u|∂D = α,

where Q is a function on D and α is a function on
the boundary ∂D.

There are two ways to solve this problem.



Method 1. Suppose u0 is a smooth function in
the domain D such that ∇2u0 = Q.

Then u = u0 + w , where w is the solution of the
boundary value problem for Laplace’s equation:

∇2u = 0 in the domain D,

u|∂D = β,

where β(x) = α(x) − u0(x) for any x ∈ ∂D.

We know how to solve the latter problem if D is a
rectangle or a circle. Method 1 applies only to
certain functions Q as it relies on a lucky guess.

Example: ∇2u = Q(x , y) = e−x cos 2y − sin 3x sin y .

Lucky guess: u0(x , y) = −1

3
e−x cos 2y + 1

10
sin 3x sin y .



Method 2. u = u1 + u2,

where u1 is the solution of the problem

∇2u1 = Q in the domain D,

u1|∂D = 0,

while u2 is the solution of the problem

∇2u2 = 0 in the domain D,

u2|∂D = α.

We know how to solve the latter problem if D is a
rectangle or a circle. The former problem is solved
by method of eigenfunction expansion.



Boundary value problem:

∇2u1 = Q in the domain D,

u1|∂D = 0.

Let λ1 < λ2 ≤ . . . be eigenvalues of the negative
Dirichlet Laplacian in D (counting with
multiplicities), and φ1, φ2, . . . be the corresponding
(orthogonal) eigenfunctions.



We have that

u1(x , y) =
∑∞

n=1
cnφn(x , y),

Q(x , y) =
∑∞

n=1
qnφn(x , y).

The Laplacian ∇2u1 can be evaluated term-by-term
(it follows from the fact that u1|∂D = 0). Hence

∇2u1 =
∑∞

n=1
cn∇

2φn = −
∑∞

n=1
λncnφn.

Thus −λncn = qn for n = 1, 2, . . . .

Solution:

u1 = −
∑∞

n=1
λ−1

n
qnφn, where qn =

〈Q, φn〉

〈φn, φn〉
.


