Math 412-501

Theory of Partial Differential Equations
Lecture 3-6: Nonhomogeneous problems. Method of eigenfunction expansion.

Nonhomogeneous boundary conditions

Initial-boundary value problem for the heat equation:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<L) \\
& u(0, t)=A \\
& u(L, t)=B \\
& u(x, 0)=f(x) \quad(0<x<L) .
\end{aligned}
$$

Our goal is to reduce this problem to an analogous one with homogeneous boundary conditions.

Suppose $u_{0}(x, t)$ is a solution of the equation that satisfies the boundary conditions.
Consider $w(x, t)=u(x, t)-u_{0}(x, t)$.
u and u_{0} are solutions of the heat equation
$\Longrightarrow w=u-u_{0}$ is also a solution
u and u_{0} satisfy the same boundary conditions
$\Longrightarrow w=u-u_{0}$ satisfies homogeneous BCs
$w(x, t)$ is a solution of the following problem:

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=k \frac{\partial^{2} w}{\partial x^{2}} \quad(0<x<L) \\
& w(0, t)=w(L, t)=0 \\
& w(x, 0)=g(x), \text { where } g(x)=f(x)-u_{0}(x, 0)
\end{aligned}
$$

How do we find a solution $u_{0}(x, t)$?
Steady-state (or equilibrium) solution:
$u_{0}(x, t)=u_{0}(x)$.
$u_{0}(x)$ is a solution of the boundary value problem

$$
\frac{d^{2} u_{0}}{d x^{2}}=0, \quad u_{0}(0)=A, \quad u_{0}(L)=B
$$

The general solution of the equation is $u_{0}(x)=c_{1} x+c_{2}$, where c_{1}, c_{2} are constants.
Boundary conditions are satisfied if

$$
u_{0}(x)=A+\frac{B-A}{L} x
$$

Initial-boundary value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \\
& u(0, t)=A, \quad u(L, t)=B \\
& u(x, 0)=f(x) \quad(0<x<L)
\end{aligned}
$$

Solution: $\quad u(x, t)=u_{0}(x)+w(x, t)$
$=A+\frac{B-A}{L} x+\sum_{n=1}^{\infty} b_{n} \exp \left(-(n \pi / L)^{2} k t\right) \sin \frac{n \pi x}{L}$,
where b_{n} are coefficients of the Fourier sine series on $[0, L]$ of the function $g(x)=f(x)-A-\frac{B-A}{L} x$.

Heat equation with sources:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+Q(x) \quad(0<x<L) \\
& u(0, t)=A, \quad u(L, t)=B \\
& u(x, 0)=f(x) \quad(0<x<L)
\end{aligned}
$$

Suppose $u_{0}(x, t)=u_{0}(x)$ is an equilibrium solution.
Then $w(x, t)=u(x, t)-u_{0}(x)$ is a solution of the homogeneous heat equation with homogeneous boundary conditions.

Solution: $u(x, t)=u_{0}(x)+w(x, t)$, where u_{0} is the solution of the boundary value problem

$$
k \frac{d^{2} u_{0}}{d x^{2}}+Q(x)=0, \quad u_{0}(0)=A, \quad u_{0}(L)=B
$$

and $w(x, t)$ is the solution of the initial-boundary value problem

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=k \frac{\partial^{2} w}{\partial x^{2}} \quad(0<x<L) \\
& w(0, t)=w(L, t)=0 \\
& w(x, 0)=f(x)-u_{0}(x)
\end{aligned}
$$

For some boundary conditions, there is no equilibrium solution. Besides, there is no equilibrium solution if the boundary conditions or the sources depend on time.

Time-dependent problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+Q(x, t) \quad(0<x<L) \\
& u(0, t)=A(t), \quad u(L, t)=B(t) \quad(t>0) \\
& u(x, 0)=f(x) \quad(0<x<L)
\end{aligned}
$$

We can still reduce the problem to an analogous one with homogeneous boundary conditions.

Suppose $u_{0}(x, t)$ is a smooth function satisfying the boundary conditions (not necessarily a solution of the PDE). For example,

$$
u_{0}(x, t)=A(t)+\frac{B(t)-A(t)}{L} x
$$

Then $w(x, t)=u(x, t)-u_{0}(x, t)$ satisfies homogeneous boundary conditions.
Substitute $u=u_{0}+w$ into the equation:

$$
\begin{gathered}
\frac{\partial\left(u_{0}+w\right)}{\partial t}=k \frac{\partial^{2}\left(u_{0}+w\right)}{\partial x^{2}}+Q(x, t), \\
\frac{\partial w}{\partial t}=k \frac{\partial^{2} w}{\partial x^{2}}+\left(Q(x, t)-\frac{\partial u_{0}}{\partial t}+k \frac{\partial^{2} u_{0}}{\partial x^{2}}\right) .
\end{gathered}
$$

Also, $w(x, 0)=f(x)-u_{0}(x, 0)$.

Solution: $\quad u(x, t)=u_{0}(x, t)+w(x, t)$, where

$$
u_{0}(x, t)=A(t)+\frac{B(t)-A(t)}{L} x
$$

and $w(x, t)$ is the solution of the initial-boundary value problem

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=k \frac{\partial^{2} w}{\partial x^{2}}+\widetilde{Q}(x, t) \quad(0<x<L) \\
& w(0, t)=w(L, t)=0 \\
& w(x, 0)=g(x) \quad(0<x<L)
\end{aligned}
$$

in which $\widetilde{Q}(x, t)=Q(x, t)-\frac{\partial u_{0}}{\partial t}+k \frac{\partial u_{0}}{\partial x^{2}}$, $g(x)=f(x)-u_{0}(x, 0)$.

Method of eigenfunction expansion

Initial-boundary value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+Q(x, t) \quad(0<x<L) \\
& u(0, t)=u(L, t)=0 \\
& u(x, 0)=f(x) \quad(0<x<L)
\end{aligned}
$$

Consider the related eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(L)=0 .
$$

The eigenvalues are $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=1,2, \ldots$, and the corresponding eigenfunctions are $\phi_{n}(x)=\sin \frac{n \pi x}{L}$.

Any piecewise smooth function on $[0, L]$ can be expanded into the Fourier sine series. In particular,

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n}(t) \phi_{n}(x)
$$

where $a_{1}(t), a_{2}(t), \ldots$ are some functions.
Let us assume that the series can be differentiated term-by-term (one can show this; an important reason is that $u(x, t)$ satisfies homogeneous boundary conditions). Then

$$
\frac{\partial u}{\partial t}=\sum_{n=1}^{\infty} a_{n}^{\prime}(t) \phi_{n}(x)
$$

$\frac{\partial^{2} u}{\partial x^{2}}=\sum_{n=1}^{\infty} a_{n}(t) \phi_{n}^{\prime \prime}(x)=-\sum_{n=1}^{\infty} \lambda_{n} a_{n}(t) \phi_{n}(x)$.

Also,

$$
\begin{aligned}
Q(x, t) & =\sum_{n=1}^{\infty} q_{n}(t) \phi_{n}(x), \\
f(x) & =\sum_{n=1}^{\infty} b_{n} \phi_{n}(x)
\end{aligned}
$$

Substitute all series into the equation:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a_{n}^{\prime}(t) \phi_{n}(x)= \\
& =-k \sum_{n=1}^{\infty} \lambda_{n} a_{n}(t) \phi_{n}(x)+\sum_{n=1}^{\infty} q_{n}(t) \phi_{n}(x), \\
& \quad \sum_{n=1}^{\infty}\left(a_{n}^{\prime}(t)+k \lambda_{n} a_{n}(t)-q_{n}(t)\right) \phi_{n}(x)=0 .
\end{aligned}
$$

Initial condition is satisfied if

$$
\sum_{n=1}^{\infty} a_{n}(0) \phi_{n}(x)=\sum_{n=1}^{\infty} b_{n} \phi_{n}(x)
$$

It follows that for any $n \geq 1$ we have

$$
a_{n}^{\prime}(t)+k \lambda_{n} a_{n}(t)=q_{n}(t), \quad a_{n}(0)=b_{n} .
$$

This is an initial value problem for a_{n}.
Multiply both sides of the ODE by $e^{\lambda_{n} k t}$:

$$
\begin{gathered}
e^{\lambda_{n} k t} a_{n}^{\prime}(t)+k \lambda_{n} e^{\lambda_{n} k t} a_{n}(t)=e^{\lambda_{n} k t} q_{n}(t), \\
\left(e^{\lambda_{n} k t} a_{n}(t)\right)^{\prime}=e^{\lambda_{n} k t} q_{n}(t), \\
e^{\lambda_{n} k t} a_{n}(t)-a_{n}(0)=\int_{0}^{t} e^{\lambda_{n} k \tau} q_{n}(\tau) d \tau, \\
a_{n}(t)=b_{n} e^{-\lambda_{n} k t}+e^{-\lambda_{n} k t} \int_{0}^{t} e^{\lambda_{n} k \tau} q_{n}(\tau) d \tau .
\end{gathered}
$$

Solution: $\quad u(x, t)=\sum_{n=1}^{\infty} a_{n}(t) \sin \frac{n \pi x}{L}$, where

$$
\begin{aligned}
& a_{n}(t)=b_{n} e^{-\lambda_{n} k t}+e^{-\lambda_{n} k t} \int_{0}^{t} e^{\lambda_{n} k \tau} q_{n}(\tau) d \tau \\
& \lambda_{n}=(n \pi / L)^{2}, \\
& b_{n}=\frac{\left\langle f, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle}=\frac{2}{L} \int_{0}^{L} f(\xi) \sin \frac{n \pi \xi}{L} d \xi \\
& q_{n}(\tau)=\frac{\left\langle Q(\cdot, \tau), \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle}=\frac{2}{L} \int_{0}^{L} Q(\xi, \tau) \sin \frac{n \pi \xi}{L} d \xi
\end{aligned}
$$

If $Q=0$ then $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\lambda_{n} k t} \phi_{n}(x)$, just as the separation of variables yields.

Poisson's equation

Poisson's equation is a nonhomogeneous version of Laplace's equation: $\nabla^{2} u=Q$.

Consider a boundary value problem:

$$
\begin{aligned}
& \nabla^{2} u=Q \quad \text { in the domain } D \\
& \left.u\right|_{\partial D}=\alpha
\end{aligned}
$$

where Q is a function on D and α is a function on the boundary ∂D.

There are two ways to solve this problem.

Method 1. Suppose u_{0} is a smooth function in the domain D such that $\nabla^{2} u_{0}=Q$.
Then $u=u_{0}+w$, where w is the solution of the boundary value problem for Laplace's equation:

$$
\begin{aligned}
& \nabla^{2} u=0 \quad \text { in the domain } D, \\
& \left.u\right|_{\partial D}=\beta
\end{aligned}
$$

where $\beta(\mathbf{x})=\alpha(\mathbf{x})-u_{0}(\mathbf{x})$ for any $\mathbf{x} \in \partial D$.
We know how to solve the latter problem if D is a rectangle or a circle. Method 1 applies only to certain functions Q as it relies on a lucky guess.

Example: $\quad \nabla^{2} u=Q(x, y)=e^{-x} \cos 2 y-\sin 3 x \sin y$.
Lucky guess: $\quad u_{0}(x, y)=-\frac{1}{3} e^{-x} \cos 2 y+\frac{1}{10} \sin 3 x \sin y$.

Method 2. $u=u_{1}+u_{2}$,

where u_{1} is the solution of the problem

$$
\begin{aligned}
& \nabla^{2} u_{1}=Q \quad \text { in the domain } D \\
& \left.u_{1}\right|_{\partial D}=0
\end{aligned}
$$

while u_{2} is the solution of the problem

$$
\begin{aligned}
& \nabla^{2} u_{2}=0 \quad \text { in the domain } D, \\
& \left.u_{2}\right|_{\partial D}=\alpha .
\end{aligned}
$$

We know how to solve the latter problem if D is a rectangle or a circle. The former problem is solved by method of eigenfunction expansion.

Boundary value problem:

$$
\begin{aligned}
\nabla^{2} u_{1} & =Q \quad \text { in the domain } D \\
\left.u_{1}\right|_{\partial D} & =0
\end{aligned}
$$

Let $\lambda_{1}<\lambda_{2} \leq \ldots$ be eigenvalues of the negative Dirichlet Laplacian in D (counting with multiplicities), and $\phi_{1}, \phi_{2}, \ldots$ be the corresponding (orthogonal) eigenfunctions.

We have that

$$
\begin{aligned}
& u_{1}(x, y)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x, y) \\
& Q(x, y)=\sum_{n=1}^{\infty} q_{n} \phi_{n}(x, y)
\end{aligned}
$$

The Laplacian $\nabla^{2} u_{1}$ can be evaluated term-by-term (it follows from the fact that $\left.u_{1}\right|_{\partial D}=0$). Hence

$$
\nabla^{2} u_{1}=\sum_{n=1}^{\infty} c_{n} \nabla^{2} \phi_{n}=-\sum_{n=1}^{\infty} \lambda_{n} c_{n} \phi_{n}
$$

Thus $-\lambda_{n} c_{n}=q_{n}$ for $n=1,2, \ldots$.

Solution:

$$
u_{1}=-\sum_{n=1}^{\infty} \lambda_{n}^{-1} q_{n} \phi_{n}, \text { where } q_{n}=\frac{\left\langle Q, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle}
$$

