Math 412-501
Theory of Partial Differential Equations

Lecture 3-7: Poisson’s equation.
Complex form of Fourier series.
Fourier transforms.



Poisson’s equation

Poisson’s equation is the nonhomogeneous version
of Laplace's equation: V?u = Q.

Consider a boundary value problem:
V2u= Q in the domain D,
ulop = «,

where @ is a function on D and « is a function on
the boundary 0D.

There are two ways to solve this problem.



Method 1. Suppose i is a smooth function in
the domain D such that VZu, = Q.

Then u = ug+ w, where w is the solution of the
boundary value problem for Laplace’s equation:
V2u=0 in the domain D,
ulap = 03,
where ((x) = a(x) — ug(x) for any x € 9D.
We know how to solve the latter problem if D is a

rectangle or a circle. Method 1 applies only to
certain functions @ as it relies on a lucky guess.

Example: V?u = Q(x,y) = e *cos2y — sin3xsiny.

Lucky guess: up(x,y) = % X cos2y —|— 5sin3xsiny.



Method 2. u = u; + w,
where u; is the solution of the problem
V2u; = Q in the domain D,
utlop = 0,
while s is the solution of the problem
V2u, =0 in the domain D,
Ulop = a.
We know how to solve the latter problem if D is a

rectangle or a circle. The former problem is solved
by method of eigenfunction expansion.



Boundary value problem:
V2u; = Q in the domain D,
uilap = 0.

Let A\; < Ay < ... be eigenvalues of the negative
Dirichlet Laplacian in D (counting with
multiplicities), and ¢1, ¢», ... be the corresponding
(orthogonal) eigenfunctions.



We have that

u(x,y) =D cabalx,¥),
Q(X; )/) = Z:Ozl qn¢n(xa Y)-

The Laplacian V2u; can be evaluated term-by-term
(it follows from the fact that u;|9p = 0). Hence

2, o0 2, o
V=) aVin=—) A
Thus —A\,c,=gq, for n=1,2,....

Solution:

== 3" a0, where g, — A0

(n; On)




Heat equation on an infinite interval

Initial-boundary value problem:
ou 0%u
a =k @ (O <X < OO),

u(0,t) =0, XIer;o u(x,t) =0,
u(x,0) = f(x) (0 < x < 00).

The problem is supposed to describe heat
conduction in a very long rod.

We expect that the solution is the limit of solutions
on intervals [0, L] as L — oo.



The problem on a finite interval:

du 0%u

u(0,t) = u(L,t) =0,
u(x,0) = f(x) (0 < x < L).

Solution: Expand f into the Fourier sine series on
[0, L]: - nrix

f(X) = Zn:l bn sin T,

2 [t X
where b, = —/ f(X)sin 07X 4z,

L/, L

nmx

Then u(x,t) = Zoo_l b,exp(—(nm/L)*kt) sin -



2 o0
Forany w >0 let B(w)= —/ f(X)sinwk dX.
0

/i

For simplicity, assume that f(x) = 0 for x > L.
Then B(w) is well defined. Moreover,

2 [t nmx
b= [ f£()sin =X g5 ——B< )
L /0 (%)sin == d% =7 B(7
provided that L > L. Therefore
u(x, t) = 7 Zn_ (wn) exp(—w?kt) sinwpx,
where w, = nm/L. It follows that

lim u(x,t) = / B(w)e "k sinwx dw.
0

L—o0



The problem on the infinite interval:

ou 0%u
u(0,t) =0, lim u(x,t) =0,

X—00

u(x,0) = f(x) (0 < x < ).

Let us try and solve this problem by separation of
variables. First we search for solutions

u(x, t) = ¢(x)G(t) of the equation that satisfy the
boundary conditions. The PDE holds if

d*¢ _ dG __
7z = — A\, b= —\kt,

where \ is a separation constant.
Boundary conditions u(0, t) = u(co, t) = 0 hold if
¢(0) = ¢(o0) = 0.



Eigenvalue problem on (0, co):
¢" =—=Xp,  $(0) = P(o0) =0.
This problem has no eigenvalues. If we drop the

condition ¢(co) = 0 then any A € C will be an
eigenvalue, which is bad too.

The right decision is to relax the condition:
9" =—=Xp,  ¢(0) =0, |p(c0)| < o0.
Eigenvalues: \ = w?, where w > 0.
Eigenfunctions: ¢, (x) = sinwx.
Dependence on t:
G'= —\kG = G(t) = qe M



Solutions with separated variables:

w2kt

uy(x,t) = e ¥ sinwx, w>0.

Now we search for the solution of the
initial-boundary value problem as a superposition of
solutions with separated variables:

u(x, t) :/ B(w)e M sinwx dw.
0
The initial condition u(x,0) = f(x) is satisfied if
f(x) = / B(w) sinwx dw.
0

The right-hand side is called a Fourier integral.



Solution: Expand f into the Fourier integral:

f(x):/ B(w) sinwx dw.

0

Then u(x, t):/ B(w)e " sinwx dw.
0

How do we expand f into the Fourier integral?

Approximation by finite-interval problems suggests

that

B(w) = 2 /OOO f(x)sinwx dx.

/0



Fourier sine transform
Let f be a function on (0, 00). The function
2 oo
S[fl(w) = —/ f(x)sinwxdx, w>0
0

T

is called the Fourier sine transform of f.

The transform S[f] is well defined if the integral
converges for all w > 0.

One sufficient condition is [;~ |f(x)| dx < co.

Given a function F on (0, c0), the function
STHF)(x) :/ F(w)sinwxdw, x>0
0

is called the inverse Fourier sine transform of F.



Theorem Suppose f is an absolutely integrable
function on (0, 00) and let F = S[f] be its Fourier
sine transform.

(i) If f is smooth then f = S7![F].
(i) If f is piecewise smooth then the inverse

Fourier sine transform S~1[F] is equal to f at points
of continuity. Otherwise

f(x+)+ f(x—).

A =



Fourier cosine transform
Given a function f on (0, c0), the function
2 0
Clfl(w) = 2 / F(x)coswx dx, >0
™ Jo
is called the Fourier cosine transform of f.

Given a function F on (0, 00), the function
CYF](x) :/ F(w)coswxdw, x>0
0

is the inverse Fourier cosine transform of F.

Theorem Suppose f is an absolutely integrable
function on (0, 00) and let F = C[f] be its Fourier
cosine transform. If f is smooth then f = C1[F].



A Fourier series on the interval [—L, L]:

nmx 00 nmx
ap + E ancos——|— b, sin —.
n=1 n=1 L

A Fourier series in the complex form:

00 IinmTx
E Cn EXP .
n=—oc L

Note that for any y € R,

e¥ =cosy +isiny, e V= cosy —isiny,

cosy =3(e¥ +e7¥), siny=2(e¥ —e V)
Hence both forms of the Fourier series are
equivalent. Coefficients are related as follows:

ag=c¢c, ap=¢c+c, by=i(ch—c_,), n>1.



For any n € Z, let ¢,(x) = ™™/t Functions ¢, are
orthogonal relative to the inner product

(. g) = / F(x)2(x) dx.

L
Indeed, if n # m, then

L —_—
<¢n> ¢m> = / eimrX/L emmx/L dx

L

L L
_ / ein7rx/L e—imﬂ'x/L dx = / ei(n—m)ﬂ'x/L dx
—L —L

L . L
_ e/(n—m)ﬂx/L ) —0.

i(n—m)m L



Also, , ,
_ 2 _ _
<¢na ¢n> = /_L ‘Cbn(X)‘ dx = /_L dx = 2L.

Functions ¢, form a basis in the Hilbert space
Lo([—L, L]). Any square-integrable function f on
[—L, L] is expanded into a series

)= ata(x) =D ce™

that converges in the mean. Coefficients are
obtained as usual:

— <f7¢”> _ 1 ' —inmx/L
T Gmom 2L /_L Fx)e T




Fourier transform

Given a function f : R — C, the function

o) = FINEW) = o [ e ™ok, weR

0
is called the Fourier transform of f.

Given a function F : R — C, the function

FF](x) :/_ F(w)e“"dw, xeR

is the inverse Fourier transform of F.

Theorem Suppose f is an absolutely integrable
function on (—o0,0) and let F = F[f] be its
Fourier transform. If f is smooth then f = F1[F].



