Math 412-501
Theory of Partial Differential Equations
Lecture 3-7: Poisson's equation. Complex form of Fourier series. Fourier transforms.

Poisson's equation

Poisson's equation is the nonhomogeneous version of Laplace's equation: $\nabla^{2} u=Q$.

Consider a boundary value problem:

$$
\begin{aligned}
& \nabla^{2} u=Q \quad \text { in the domain } D \\
& \left.u\right|_{\partial D}=\alpha
\end{aligned}
$$

where Q is a function on D and α is a function on the boundary ∂D.

There are two ways to solve this problem.

Method 1. Suppose u_{0} is a smooth function in the domain D such that $\nabla^{2} u_{0}=Q$.
Then $u=u_{0}+w$, where w is the solution of the boundary value problem for Laplace's equation:

$$
\begin{aligned}
& \nabla^{2} u=0 \quad \text { in the domain } D, \\
& \left.u\right|_{\partial D}=\beta
\end{aligned}
$$

where $\beta(\mathbf{x})=\alpha(\mathbf{x})-u_{0}(\mathbf{x})$ for any $\mathbf{x} \in \partial D$.
We know how to solve the latter problem if D is a rectangle or a circle. Method 1 applies only to certain functions Q as it relies on a lucky guess.

Example: $\quad \nabla^{2} u=Q(x, y)=e^{-x} \cos 2 y-\sin 3 x \sin y$.
Lucky guess: $\quad u_{0}(x, y)=-\frac{1}{3} e^{-x} \cos 2 y+\frac{1}{10} \sin 3 x \sin y$.

Method 2. $u=u_{1}+u_{2}$,

where u_{1} is the solution of the problem

$$
\begin{aligned}
& \nabla^{2} u_{1}=Q \quad \text { in the domain } D \\
& \left.u_{1}\right|_{\partial D}=0
\end{aligned}
$$

while u_{2} is the solution of the problem

$$
\begin{aligned}
& \nabla^{2} u_{2}=0 \quad \text { in the domain } D, \\
& \left.u_{2}\right|_{\partial D}=\alpha .
\end{aligned}
$$

We know how to solve the latter problem if D is a rectangle or a circle. The former problem is solved by method of eigenfunction expansion.

Boundary value problem:

$$
\begin{aligned}
\nabla^{2} u_{1} & =Q \quad \text { in the domain } D \\
\left.u_{1}\right|_{\partial D} & =0
\end{aligned}
$$

Let $\lambda_{1}<\lambda_{2} \leq \ldots$ be eigenvalues of the negative Dirichlet Laplacian in D (counting with multiplicities), and $\phi_{1}, \phi_{2}, \ldots$ be the corresponding (orthogonal) eigenfunctions.

We have that

$$
\begin{aligned}
& u_{1}(x, y)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x, y) \\
& Q(x, y)=\sum_{n=1}^{\infty} q_{n} \phi_{n}(x, y)
\end{aligned}
$$

The Laplacian $\nabla^{2} u_{1}$ can be evaluated term-by-term (it follows from the fact that $\left.u_{1}\right|_{\partial D}=0$). Hence

$$
\nabla^{2} u_{1}=\sum_{n=1}^{\infty} c_{n} \nabla^{2} \phi_{n}=-\sum_{n=1}^{\infty} \lambda_{n} c_{n} \phi_{n}
$$

Thus $-\lambda_{n} c_{n}=q_{n}$ for $n=1,2, \ldots$.

Solution:

$$
u_{1}=-\sum_{n=1}^{\infty} \lambda_{n}^{-1} q_{n} \phi_{n}, \text { where } q_{n}=\frac{\left\langle Q, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle}
$$

Heat equation on an infinite interval

Initial-boundary value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<\infty) \\
& u(0, t)=0, \quad \lim _{x \rightarrow \infty} u(x, t)=0 \\
& u(x, 0)=f(x) \quad(0<x<\infty)
\end{aligned}
$$

The problem is supposed to describe heat conduction in a very long rod.
We expect that the solution is the limit of solutions on intervals $[0, L]$ as $L \rightarrow \infty$.

The problem on a finite interval:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<L) \\
& u(0, t)=u(L, t)=0 \\
& u(x, 0)=f(x) \quad(0<x<L)
\end{aligned}
$$

Solution: Expand f into the Fourier sine series on $[0, L]$:

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

where $\quad b_{n}=\frac{2}{L} \int_{0}^{L} f(\tilde{x}) \sin \frac{n \pi \tilde{x}}{L} d \tilde{x}$.
Then $u(x, t)=\sum_{n=1}^{\infty} b_{n} \exp \left(-(n \pi / L)^{2} k t\right) \sin \frac{n \pi x}{L}$.

For any $\omega>0$ let $B(\omega)=\frac{2}{\pi} \int_{0}^{\infty} f(\tilde{x}) \sin \omega \tilde{x} d \tilde{x}$.
For simplicity, assume that $f(x)=0$ for $x>L_{0}$.
Then $B(\omega)$ is well defined. Moreover,

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(\tilde{x}) \sin \frac{n \pi \tilde{x}}{L} d \tilde{x}=\frac{\pi}{L} B\left(\frac{n \pi}{L}\right)
$$

provided that $L \geq L_{0}$. Therefore

$$
u(x, t)=\frac{\pi}{L} \sum_{n=1}^{\infty} B\left(\omega_{n}\right) \exp \left(-\omega_{n}^{2} k t\right) \sin \omega_{n} x
$$

where $\omega_{n}=n \pi / L$. It follows that

$$
\lim _{L \rightarrow \infty} u(x, t)=\int_{0}^{\infty} B(\omega) e^{-\omega^{2} k t} \sin \omega x d \omega
$$

The problem on the infinite interval:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<\infty) \\
& u(0, t)=0, \quad \lim _{x \rightarrow \infty} u(x, t)=0 \\
& u(x, 0)=f(x) \quad(0<x<\infty)
\end{aligned}
$$

Let us try and solve this problem by separation of variables. First we search for solutions $u(x, t)=\phi(x) G(t)$ of the equation that satisfy the boundary conditions. The PDE holds if

$$
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi, \quad \frac{d G}{d t}=-\lambda k t
$$

where λ is a separation constant.
Boundary conditions $u(0, t)=u(\infty, t)=0$ hold if $\phi(0)=\phi(\infty)=0$.

Eigenvalue problem on $(0, \infty)$:

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(\infty)=0 .
$$

This problem has no eigenvalues. If we drop the condition $\phi(\infty)=0$ then any $\lambda \in \mathbb{C}$ will be an eigenvalue, which is bad too.
The right decision is to relax the condition:

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=0, \quad|\phi(\infty)|<\infty .
$$

Eigenvalues: $\lambda=\omega^{2}$, where $\omega>0$.
Eigenfunctions: $\quad \phi_{\omega}(x)=\sin \omega x$.
Dependence on t :

$$
G^{\prime}=-\lambda k G \Longrightarrow G(t)=c_{0} e^{-\lambda k t}
$$

Solutions with separated variables:

$$
u_{\omega}(x, t)=e^{-\omega^{2} k t} \sin \omega x, \quad \omega>0
$$

Now we search for the solution of the initial-boundary value problem as a superposition of solutions with separated variables:

$$
u(x, t)=\int_{0}^{\infty} B(\omega) e^{-\omega^{2} k t} \sin \omega x d \omega
$$

The initial condition $u(x, 0)=f(x)$ is satisfied if

$$
f(x)=\int_{0}^{\infty} B(\omega) \sin \omega x d \omega
$$

The right-hand side is called a Fourier integral.

Solution: Expand f into the Fourier integral:

$$
f(x)=\int_{0}^{\infty} B(\omega) \sin \omega x d \omega
$$

Then $u(x, t)=\int_{0}^{\infty} B(\omega) e^{-\omega^{2} k t} \sin \omega x d \omega$.
How do we expand f into the Fourier integral?
Approximation by finite-interval problems suggests that

$$
B(\omega)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \sin \omega x d x
$$

Fourier sine transform

Let f be a function on $(0, \infty)$. The function

$$
S[f](\omega)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \sin \omega x d x, \quad \omega>0
$$

is called the Fourier sine transform of f.
The transform $S[f]$ is well defined if the integral converges for all $\omega>0$.
One sufficient condition is $\int_{0}^{\infty}|f(x)| d x<\infty$.
Given a function F on $(0, \infty)$, the function

$$
S^{-1}[F](x)=\int_{0}^{\infty} F(\omega) \sin \omega x d \omega, \quad x>0
$$

is called the inverse Fourier sine transform of F.

Theorem Suppose f is an absolutely integrable function on $(0, \infty)$ and let $F=S[f]$ be its Fourier sine transform.
(i) If f is smooth then $f=S^{-1}[F]$.
(ii) If f is piecewise smooth then the inverse Fourier sine transform $S^{-1}[F]$ is equal to f at points of continuity. Otherwise

$$
S^{-1}[F](x)=\frac{f(x+)+f(x-)}{2}
$$

Fourier cosine transform

Given a function f on $(0, \infty)$, the function

$$
C[f](\omega)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \cos \omega x d x, \quad \omega>0
$$

is called the Fourier cosine transform of f.
Given a function F on $(0, \infty)$, the function

$$
C^{-1}[F](x)=\int_{0}^{\infty} F(\omega) \cos \omega x d \omega, \quad x>0
$$

is the inverse Fourier cosine transform of F.
Theorem Suppose f is an absolutely integrable function on $(0, \infty)$ and let $F=C[f]$ be its Fourier cosine transform. If f is smooth then $f=C^{-1}[F]$.

A Fourier series on the interval $[-L, L]$:

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

A Fourier series in the complex form:

$$
\sum_{n=-\infty}^{\infty} c_{n} \exp \frac{i n \pi x}{L}
$$

Note that for any $y \in \mathbb{R}$,

$$
\begin{gathered}
e^{i y}=\cos y+i \sin y, \quad e^{-i y}=\cos y-i \sin y \\
\cos y=\frac{1}{2}\left(e^{i y}+e^{-i y}\right), \quad \sin y=\frac{1}{2 i}\left(e^{i y}-e^{-i y}\right)
\end{gathered}
$$

Hence both forms of the Fourier series are equivalent. Coefficients are related as follows:

$$
a_{0}=c_{0}, \quad a_{n}=c_{n}+c_{-n}, \quad b_{n}=i\left(c_{n}-c_{-n}\right), \quad n \geq 1
$$

For any $n \in \mathbb{Z}$, let $\phi_{n}(x)=e^{i n \pi x / L}$. Functions ϕ_{n} are orthogonal relative to the inner product

$$
\langle f, g\rangle=\int_{-L}^{L} f(x) \overline{g(x)} d x
$$

Indeed, if $n \neq m$, then

$$
\begin{gathered}
\left\langle\phi_{n}, \phi_{m}\right\rangle=\int_{-L}^{L} e^{i n \pi x / L} \overline{e^{i m \pi x / L}} d x \\
=\int_{-L}^{L} e^{i n \pi x / L} e^{-i m \pi x / L} d x=\int_{-L}^{L} e^{i(n-m) \pi x / L} d x \\
=\left.\frac{L}{i(n-m) \pi} e^{i(n-m) \pi x / L}\right|_{-L} ^{L}=0
\end{gathered}
$$

Also,

$$
\left\langle\phi_{n}, \phi_{n}\right\rangle=\int_{-L}^{L}\left|\phi_{n}(x)\right|^{2} d x=\int_{-L}^{L} d x=2 L
$$

Functions ϕ_{n} form a basis in the Hilbert space $L_{2}([-L, L])$. Any square-integrable function f on $[-L, L]$ is expanded into a series

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} \phi_{n}(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n \pi x / L}
$$

that converges in the mean. Coefficients are obtained as usual:

$$
c_{n}=\frac{\left\langle f, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i n \pi x / L} d x
$$

Fourier transform

Given a function $f: \mathbb{R} \rightarrow \mathbb{C}$, the function

$$
\hat{f}(\omega)=\mathcal{F}[f](\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x, \quad \omega \in \mathbb{R}
$$

is called the Fourier transform of f.
Given a function $F: \mathbb{R} \rightarrow \mathbb{C}$, the function

$$
\mathcal{F}^{-1}[F](x)=\int_{-\infty}^{\infty} F(\omega) e^{i \omega x} d \omega, \quad x \in \mathbb{R}
$$

is the inverse Fourier transform of F.
Theorem Suppose f is an absolutely integrable function on $(-\infty, \infty)$ and let $F=\mathcal{F}[f]$ be its Fourier transform. If f is smooth then $f=\mathcal{F}^{-1}[F]$.

