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Theory of Partial Differential Equations

Lecture 3-7: Poisson’s equation.

Complex form of Fourier series.

Fourier transforms.



Poisson’s equation

Poisson’s equation is the nonhomogeneous version
of Laplace’s equation: ∇2u = Q.

Consider a boundary value problem:

∇2u = Q in the domain D,

u|∂D = α,

where Q is a function on D and α is a function on
the boundary ∂D.

There are two ways to solve this problem.



Method 1. Suppose u0 is a smooth function in
the domain D such that ∇2u0 = Q.

Then u = u0 + w , where w is the solution of the
boundary value problem for Laplace’s equation:

∇2u = 0 in the domain D,

u|∂D = β,

where β(x) = α(x) − u0(x) for any x ∈ ∂D.

We know how to solve the latter problem if D is a
rectangle or a circle. Method 1 applies only to
certain functions Q as it relies on a lucky guess.

Example: ∇2u = Q(x , y) = e−x cos 2y − sin 3x sin y .

Lucky guess: u0(x , y) = −1
3e

−x cos 2y + 1
10 sin 3x sin y .



Method 2. u = u1 + u2,

where u1 is the solution of the problem

∇2u1 = Q in the domain D,

u1|∂D = 0,

while u2 is the solution of the problem

∇2u2 = 0 in the domain D,

u2|∂D = α.

We know how to solve the latter problem if D is a
rectangle or a circle. The former problem is solved
by method of eigenfunction expansion.



Boundary value problem:

∇2u1 = Q in the domain D,

u1|∂D = 0.

Let λ1 < λ2 ≤ . . . be eigenvalues of the negative
Dirichlet Laplacian in D (counting with
multiplicities), and φ1, φ2, . . . be the corresponding
(orthogonal) eigenfunctions.



We have that

u1(x , y) =
∑∞

n=1
cnφn(x , y),

Q(x , y) =
∑∞

n=1
qnφn(x , y).

The Laplacian ∇2u1 can be evaluated term-by-term
(it follows from the fact that u1|∂D = 0). Hence

∇2u1 =
∑∞

n=1
cn∇

2φn = −
∑∞

n=1
λncnφn.

Thus −λncn = qn for n = 1, 2, . . . .

Solution:

u1 = −
∑∞

n=1
λ−1

n qnφn, where qn =
〈Q, φn〉

〈φn, φn〉
.



Heat equation on an infinite interval

Initial-boundary value problem:

∂u

∂t
= k

∂2u

∂x2
(0 < x < ∞),

u(0, t) = 0, lim
x→∞

u(x , t) = 0,

u(x , 0) = f (x) (0 < x < ∞).

The problem is supposed to describe heat
conduction in a very long rod.

We expect that the solution is the limit of solutions
on intervals [0, L] as L → ∞.



The problem on a finite interval:

∂u

∂t
= k

∂2u

∂x2
(0 < x < L),

u(0, t) = u(L, t) = 0,

u(x , 0) = f (x) (0 < x < L).

Solution: Expand f into the Fourier sine series on
[0, L]:

f (x) =
∑∞

n=1
bn sin

nπx

L
,

where bn =
2

L

∫ L

0

f (x̃) sin
nπx̃

L
dx̃ .

Then u(x , t) =
∑∞

n=1
bn exp

(

−(nπ/L)2kt
)

sin
nπx

L
.



For any ω > 0 let B(ω) =
2

π

∫ ∞

0

f (x̃) sin ωx̃ d x̃ .

For simplicity, assume that f (x) = 0 for x > L0.
Then B(ω) is well defined. Moreover,

bn =
2

L

∫ L

0

f (x̃) sin
nπx̃

L
dx̃ =

π

L
B

(nπ

L

)

provided that L ≥ L0. Therefore

u(x , t) =
π

L

∑∞

n=1
B(ωn) exp(−ω2

nkt) sin ωnx ,

where ωn = nπ/L. It follows that

lim
L→∞

u(x , t) =

∫ ∞

0

B(ω)e−ω2kt sin ωx dω.



The problem on the infinite interval:

∂u

∂t
= k

∂2u

∂x2
(0 < x < ∞),

u(0, t) = 0, lim
x→∞

u(x , t) = 0,

u(x , 0) = f (x) (0 < x < ∞).

Let us try and solve this problem by separation of
variables. First we search for solutions
u(x , t) = φ(x)G (t) of the equation that satisfy the
boundary conditions. The PDE holds if

d2φ
dx2 = −λφ, dG

dt
= −λkt,

where λ is a separation constant.
Boundary conditions u(0, t) = u(∞, t) = 0 hold if
φ(0) = φ(∞) = 0.



Eigenvalue problem on (0,∞):

φ′′ = −λφ, φ(0) = φ(∞) = 0.

This problem has no eigenvalues. If we drop the
condition φ(∞) = 0 then any λ ∈ C will be an
eigenvalue, which is bad too.

The right decision is to relax the condition:

φ′′ = −λφ, φ(0) = 0, |φ(∞)| < ∞.

Eigenvalues: λ = ω2, where ω > 0.

Eigenfunctions: φω(x) = sin ωx .

Dependence on t:

G ′ = −λkG =⇒ G (t) = c0e
−λkt



Solutions with separated variables:

uω(x , t) = e−ω2kt sin ωx , ω > 0.

Now we search for the solution of the
initial-boundary value problem as a superposition of
solutions with separated variables:

u(x , t) =

∫ ∞

0

B(ω)e−ω2kt sin ωx dω.

The initial condition u(x , 0) = f (x) is satisfied if

f (x) =

∫ ∞

0

B(ω) sin ωx dω.

The right-hand side is called a Fourier integral.



Solution: Expand f into the Fourier integral:

f (x) =

∫ ∞

0

B(ω) sin ωx dω.

Then u(x , t) =

∫ ∞

0

B(ω)e−ω2kt sin ωx dω.

How do we expand f into the Fourier integral?

Approximation by finite-interval problems suggests
that

B(ω) =
2

π

∫ ∞

0

f (x) sin ωx dx .



Fourier sine transform

Let f be a function on (0,∞). The function

S [f ](ω) =
2

π

∫ ∞

0

f (x) sin ωx dx , ω > 0

is called the Fourier sine transform of f .

The transform S [f ] is well defined if the integral
converges for all ω > 0.

One sufficient condition is
∫ ∞

0 |f (x)| dx < ∞.

Given a function F on (0,∞), the function

S−1[F ](x) =

∫ ∞

0

F (ω) sin ωx dω, x > 0

is called the inverse Fourier sine transform of F .



Theorem Suppose f is an absolutely integrable
function on (0,∞) and let F = S [f ] be its Fourier
sine transform.

(i) If f is smooth then f = S−1[F ].

(ii) If f is piecewise smooth then the inverse
Fourier sine transform S−1[F ] is equal to f at points
of continuity. Otherwise

S−1[F ](x) =
f (x+) + f (x−)

2
.



Fourier cosine transform

Given a function f on (0,∞), the function

C [f ](ω) =
2

π

∫ ∞

0

f (x) cos ωx dx , ω > 0

is called the Fourier cosine transform of f .

Given a function F on (0,∞), the function

C−1[F ](x) =

∫ ∞

0

F (ω) cos ωx dω, x > 0

is the inverse Fourier cosine transform of F .

Theorem Suppose f is an absolutely integrable
function on (0,∞) and let F = C [f ] be its Fourier
cosine transform. If f is smooth then f = C−1[F ].



A Fourier series on the interval [−L, L]:

a0 +
∑∞

n=1
an cos

nπx

L
+

∑∞

n=1
bn sin

nπx

L
.

A Fourier series in the complex form:
∑∞

n=−∞
cn exp

inπx

L
.

Note that for any y ∈ R,

e iy = cos y + i sin y , e−iy = cos y − i sin y ,

cos y = 1
2(e

iy + e−iy), sin y = 1
2i

(e iy − e−iy).

Hence both forms of the Fourier series are
equivalent. Coefficients are related as follows:

a0 = c0, an = cn + c−n, bn = i(cn − c−n), n ≥ 1.



For any n ∈ Z, let φn(x) = e inπx/L. Functions φn are
orthogonal relative to the inner product

〈f , g〉 =

∫ L

−L

f (x)g(x) dx .

Indeed, if n 6= m, then

〈φn, φm〉 =

∫ L

−L

e inπx/L e imπx/L dx

=

∫ L

−L

e inπx/L e−imπx/L dx =

∫ L

−L

e i(n−m)πx/L dx

=
L

i(n − m)π
e i(n−m)πx/L

∣

∣

∣

L

−L
= 0.



Also,

〈φn, φn〉 =

∫ L

−L

|φn(x)|2 dx =

∫ L

−L

dx = 2L.

Functions φn form a basis in the Hilbert space
L2([−L, L]). Any square-integrable function f on
[−L, L] is expanded into a series

f (x) =
∑∞

n=−∞
cnφn(x) =

∑∞

n=−∞
cne

inπx/L

that converges in the mean. Coefficients are
obtained as usual:

cn =
〈f , φn〉

〈φn, φn〉
=

1

2L

∫ L

−L

f (x)e−inπx/L dx .



Fourier transform

Given a function f : R → C, the function

f̂ (ω) = F [f ](ω) =
1

2π

∫ ∞

−∞

f (x)e−iωx dx , ω ∈ R

is called the Fourier transform of f .

Given a function F : R → C, the function

F−1[F ](x) =

∫ ∞

−∞

F (ω)e iωx dω, x ∈ R

is the inverse Fourier transform of F .

Theorem Suppose f is an absolutely integrable
function on (−∞,∞) and let F = F [f ] be its
Fourier transform. If f is smooth then f = F−1[F ].


