Math 412-501 Theory of Partial Differential Equations Lecture 3-7: Poisson's equation. Complex form of Fourier series. Fourier transforms.

Poisson's equation

Poisson's equation is the nonhomogeneous version of Laplace's equation: $\nabla^2 u = Q$.

Consider a boundary value problem:

$$abla^2 u = Q$$
 in the domain D ,
 $u|_{\partial D} = \alpha$,

where Q is a function on D and α is a function on the boundary ∂D .

There are two ways to solve this problem.

Method 1. Suppose u_0 is a smooth function in the domain D such that $\nabla^2 u_0 = Q$.

Then $u = u_0 + w$, where w is the solution of the boundary value problem for Laplace's equation:

$$abla^2 u = 0$$
 in the domain D ,
 $u|_{\partial D} = eta$,

where
$$\beta(\mathbf{x}) = \alpha(\mathbf{x}) - u_0(\mathbf{x})$$
 for any $\mathbf{x} \in \partial D$.

We know how to solve the latter problem if D is a rectangle or a circle. Method 1 applies only to certain functions Q as it relies on a lucky guess.

Example: $\nabla^2 u = Q(x, y) = e^{-x} \cos 2y - \sin 3x \sin y$. Lucky guess: $u_0(x, y) = -\frac{1}{3}e^{-x} \cos 2y + \frac{1}{10} \sin 3x \sin y$. Method 2. $u = u_1 + u_2$, where u_1 is the solution of the problem $\nabla^2 u_1 = Q$ in the domain D,

$$u_1|_{\partial D}=0,$$

while u_2 is the solution of the problem

$$abla^2 u_2 = 0$$
 in the domain D ,
 $u_2|_{\partial D} = \alpha$.

We know how to solve the latter problem if D is a rectangle or a circle. The former problem is solved by method of eigenfunction expansion.

Boundary value problem:

$$abla^2 u_1 = Q$$
 in the domain D ,
 $u_1|_{\partial D} = 0.$

Let $\lambda_1 < \lambda_2 \leq \ldots$ be eigenvalues of the negative Dirichlet Laplacian in D (counting with multiplicities), and ϕ_1, ϕ_2, \ldots be the corresponding (orthogonal) eigenfunctions.

We have that

$$u_1(x,y) = \sum_{n=1}^{\infty} c_n \phi_n(x,y),$$
$$Q(x,y) = \sum_{n=1}^{\infty} q_n \phi_n(x,y).$$

The Laplacian $\nabla^2 u_1$ can be evaluated term-by-term (it follows from the fact that $u_1|_{\partial D} = 0$). Hence

$$\nabla^2 u_1 = \sum_{n=1}^{\infty} c_n \nabla^2 \phi_n = -\sum_{n=1}^{\infty} \lambda_n c_n \phi_n.$$

Thus $-\lambda_n c_n = q_n$ for $n = 1, 2, \ldots$

Solution:

$$u_1 = -\sum_{n=1}^{\infty} \lambda_n^{-1} q_n \phi_n$$
, where $q_n = rac{\langle Q, \phi_n
angle}{\langle \phi_n, \phi_n
angle}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Heat equation on an infinite interval

Initial-boundary value problem:

$$\begin{aligned} \frac{\partial u}{\partial t} &= k \frac{\partial^2 u}{\partial x^2} \qquad (0 < x < \infty), \\ u(0, t) &= 0, \quad \lim_{x \to \infty} u(x, t) = 0, \\ u(x, 0) &= f(x) \qquad (0 < x < \infty) \end{aligned}$$

The problem is supposed to describe heat conduction in a very long rod.

We expect that the solution is the limit of solutions on intervals [0, L] as $L \to \infty$.

The problem on a finite interval:

$$\begin{aligned} \frac{\partial u}{\partial t} &= k \frac{\partial^2 u}{\partial x^2} \qquad (0 < x < L), \\ u(0, t) &= u(L, t) = 0, \\ u(x, 0) &= f(x) \qquad (0 < x < L). \end{aligned}$$

Solution: Expand f into the Fourier sine series on [0, L]:

$$f(x)=\sum_{n=1}^{\infty}b_n\sin\frac{mx}{L},$$

where
$$b_n = \frac{2}{L} \int_0^L f(\tilde{x}) \sin \frac{n\pi \tilde{x}}{L} d\tilde{x}.$$

Then $u(x,t) = \sum_{n=1}^{\infty} b_n \exp\left(-(n\pi/L)^2 kt\right) \sin \frac{n\pi x}{L}$.

For any
$$\omega > 0$$
 let $B(\omega) = \frac{2}{\pi} \int_0^\infty f(\tilde{x}) \sin \omega \tilde{x} \, d\tilde{x}.$

For simplicity, assume that f(x) = 0 for $x > L_0$. Then $B(\omega)$ is well defined. Moreover,

$$b_n = rac{2}{L} \int_0^L f(ilde{x}) \sin rac{n\pi ilde{x}}{L} d ilde{x} = rac{\pi}{L} B\left(rac{n\pi}{L}
ight)$$

provided that $L \ge L_0$. Therefore

$$u(x,t) = \frac{\pi}{L} \sum_{n=1}^{\infty} B(\omega_n) \exp(-\omega_n^2 kt) \sin \omega_n x$$

where $\omega_n = n\pi/L$. It follows that

$$\lim_{L\to\infty} u(x,t) = \int_0 B(\omega)e^{-\omega^2 kt} \sin \omega x \, d\omega.$$

The problem on the infinite interval:

$$\begin{aligned} \frac{\partial u}{\partial t} &= k \frac{\partial^2 u}{\partial x^2} \qquad (0 < x < \infty), \\ u(0, t) &= 0, \qquad \lim_{x \to \infty} u(x, t) = 0, \\ u(x, 0) &= f(x) \qquad (0 < x < \infty) \end{aligned}$$

Let us try and solve this problem by separation of variables. First we search for solutions $u(x,t) = \phi(x)G(t)$ of the equation that satisfy the boundary conditions. The PDE holds if

$$rac{d^2\phi}{dx^2}=-\lambda\phi,\qquad rac{d{\sf G}}{dt}=-\lambda kt$$
 ,

where λ is a separation constant. Boundary conditions $u(0, t) = u(\infty, t) = 0$ hold if $\phi(0) = \phi(\infty) = 0$. Eigenvalue problem on $(0,\infty)$:

$$\phi'' = -\lambda \phi$$
, $\phi(0) = \phi(\infty) = 0$.

This problem has no eigenvalues. If we drop the condition $\phi(\infty) = 0$ then any $\lambda \in \mathbb{C}$ will be an eigenvalue, which is bad too.

The right decision is to relax the condition:

$$\phi'' = -\lambda \phi, \quad \phi(0) = 0, \ |\phi(\infty)| < \infty.$$

Eigenvalues: $\lambda = \omega^2$, where $\omega > 0$.
Eigenfunctions: $\phi_{\omega}(x) = \sin \omega x.$

Dependence on *t*:

$$G' = -\lambda kG \implies G(t) = c_0 e^{-\lambda kt}$$

Solutions with separated variables:

$$u_{\omega}(x,t)=e^{-\omega^2kt}\sin\omega x,\quad \omega>0.$$

Now we search for the solution of the initial-boundary value problem as a superposition of solutions with separated variables:

$$u(x,t) = \int_0^\infty B(\omega) e^{-\omega^2 kt} \sin \omega x \, d\omega.$$

The initial condition u(x,0) = f(x) is satisfied if

$$f(x) = \int_0^\infty B(\omega) \sin \omega x \, d\omega.$$

The right-hand side is called a Fourier integral.

Solution: Expand *f* into the Fourier integral:

$$f(x) = \int_0^\infty B(\omega) \sin \omega x \, d\omega.$$

Then $u(x, t) = \int_0^\infty B(\omega) e^{-\omega^2 kt} \sin \omega x \, d\omega.$

How do we expand f into the Fourier integral? Approximation by finite-interval problems suggests that

$$B(\omega) = \frac{2}{\pi} \int_0^\infty f(x) \sin \omega x \, dx.$$

Fourier sine transform

Let f be a function on $(0,\infty)$. The function

$$S[f](\omega) = \frac{2}{\pi} \int_0^\infty f(x) \sin \omega x \, dx, \quad \omega > 0$$

is called the **Fourier sine transform** of f. The transform S[f] is well defined if the integral converges for all $\omega > 0$.

One sufficient condition is $\int_0^\infty |f(x)| dx < \infty$.

Given a function F on $(0,\infty)$, the function

$$S^{-1}[F](x) = \int_0^\infty F(\omega) \sin \omega x \, d\omega, \quad x > 0$$

is called the inverse Fourier sine transform of F.

Theorem Suppose f is an absolutely integrable function on $(0, \infty)$ and let F = S[f] be its Fourier sine transform.

(i) If f is smooth then f = S⁻¹[F].
(ii) If f is piecewise smooth then the inverse
Fourier sine transform S⁻¹[F] is equal to f at points of continuity. Otherwise

$$S^{-1}[F](x) = \frac{f(x+) + f(x-)}{2}.$$

Fourier cosine transform

Given a function f on $(0,\infty)$, the function

$$C[f](\omega) = \frac{2}{\pi} \int_0^\infty f(x) \cos \omega x \, dx, \quad \omega > 0$$

is called the **Fourier cosine transform** of f. Given a function F on $(0, \infty)$, the function

$$C^{-1}[F](x) = \int_0^\infty F(\omega) \cos \omega x \, d\omega, \quad x > 0$$

is the inverse Fourier cosine transform of F.

Theorem Suppose f is an absolutely integrable function on $(0, \infty)$ and let F = C[f] be its Fourier cosine transform. If f is smooth then $f = C^{-1}[F]$.

A Fourier series on the interval [-L, L]:

$$a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}.$$

A Fourier series in the **complex form**:

$$\sum_{n=-\infty}^{\infty} c_n \exp \frac{in\pi x}{L}.$$

Note that for any $y \in \mathbb{R}$,

$$e^{iy} = \cos y + i \sin y, \quad e^{-iy} = \cos y - i \sin y,$$

 $\cos y = \frac{1}{2}(e^{iy} + e^{-iy}), \quad \sin y = \frac{1}{2i}(e^{iy} - e^{-iy}).$

Hence both forms of the Fourier series are equivalent. Coefficients are related as follows:

$$a_0 = c_0$$
, $a_n = c_n + c_{-n}$, $b_n = i(c_n - c_{-n})$, $n \ge 1$.

For any $n \in \mathbb{Z}$, let $\phi_n(x) = e^{in\pi x/L}$. Functions ϕ_n are orthogonal relative to the inner product

$$\langle f,g\rangle = \int_{-L}^{L} f(x)\overline{g(x)} \, dx.$$

Indeed, if $n \neq m$, then

$$\langle \phi_n, \phi_m \rangle = \int_{-L}^{L} e^{in\pi x/L} \,\overline{e^{im\pi x/L}} \, dx$$

$$= \int_{-L}^{L} e^{in\pi x/L} e^{-im\pi x/L} dx = \int_{-L}^{L} e^{i(n-m)\pi x/L} dx$$

$$=\frac{L}{i(n-m)\pi}e^{i(n-m)\pi \times /L}\Big|_{-L}^{L}=0.$$

Also,

$$\langle \phi_n, \phi_n \rangle = \int_{-L}^{L} |\phi_n(x)|^2 dx = \int_{-L}^{L} dx = 2L.$$

Functions ϕ_n form a basis in the Hilbert space $L_2([-L, L])$. Any square-integrable function f on [-L, L] is expanded into a series

$$f(x) = \sum_{n=-\infty}^{\infty} c_n \phi_n(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/L}$$

that converges in the mean. Coefficients are obtained as usual:

$$c_n = \frac{\langle f, \phi_n \rangle}{\langle \phi_n, \phi_n \rangle} = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-in\pi x/L} dx.$$

Fourier transform

Given a function $f : \mathbb{R} \to \mathbb{C}$, the function

$$\hat{f}(\omega) = \mathcal{F}[f](\omega) = rac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx, \quad \omega \in \mathbb{R}$$

is called the **Fourier transform** of f. Given a function $F : \mathbb{R} \to \mathbb{C}$, the function

$$\mathcal{F}^{-1}[F](x) = \int_{-\infty}^{\infty} F(\omega) e^{i\omega x} \, d\omega, \quad x \in \mathbb{R}$$

is the **inverse Fourier transform** of *F*.

Theorem Suppose f is an absolutely integrable function on $(-\infty, \infty)$ and let $F = \mathcal{F}[f]$ be its Fourier transform. If f is smooth then $f = \mathcal{F}^{-1}[F]$.