Math 412-501

Theory of Partial Differential Equations

Lecture 4-1: Green's functions. Dirac delta function.

Heat equation on the infinite interval

Initial value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad(-\infty<x<\infty) \\
& u(x, 0)=f(x)
\end{aligned}
$$

Solution: $\quad u(x, t)=\int_{-\infty}^{\infty} G(x, \tilde{x}, t) f(\tilde{x}) d \tilde{x}$,
where $G(x, \tilde{x}, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{(x-\tilde{x})^{2}}{4 k t}}$.
The solution is in the integral operator form. The function G is called the kernel of the operator. Also, $G(x, \tilde{x}, t)$ is called Green's function of the problem.

$$
G(x, \tilde{x}, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{(x-x)^{2}}{4 k t}}
$$

$G(x, \tilde{x}, t)$ is:

- defined for $t>0$,
- positive,
- infinitely smooth.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} G(x, \tilde{x}, t) d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{4 \pi k t}} e^{-\frac{(x-\bar{x})^{2}}{4 k t}} d x \\
= & \int_{-\infty}^{\infty} \frac{1}{\sqrt{4 \pi k t}} e^{-\frac{x^{2}}{4 k t}} d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-y^{2}} d y=1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial G(x, \tilde{x}, t)}{\partial x}=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{(x-x)^{2}}{4 k t}} \cdot \frac{-2(x-\tilde{x})}{4 k t} \\
&=-\frac{x-\tilde{x}}{2 k t} G(x, \tilde{x}, t) ; \\
& \frac{\partial^{2} G(x, \tilde{x}, t)}{\partial x^{2}}=\left(\frac{(x-\tilde{x})^{2}}{4 k^{2} t^{2}}-\frac{1}{2 k t}\right) G(x, \tilde{x}, t) ; \\
& \frac{\partial G(x, \tilde{x}, t)}{\partial t}=-\frac{1}{2} t^{-3 / 2} \cdot \frac{1}{\sqrt{4 \pi k}} e^{-\frac{(x-x)^{2}}{4 k t}} \\
&+\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{(x-x)^{2}}{4 k t}} \cdot \frac{(x-\tilde{x})^{2}}{4 k t^{2}}=\left(\frac{(x-\tilde{x})^{2}}{4 k t^{2}}-\frac{1}{2 t}\right) G(x, \tilde{x}, t) .
\end{aligned}
$$

Lemma For any $\tilde{x} \in \mathbb{R}$ the function $u(x, t)=G(x, \tilde{x}, t)$ is a solution of the heat equation for $t>0$.
Besides, $\lim _{t \rightarrow 0} G(x, \tilde{x}, t)= \begin{cases}\infty & \text { if } x=\tilde{x}, \\ 0 & \text { if } x \neq \tilde{x} .\end{cases}$
We say that $G(x, \tilde{x}, t)$ is the solution of the initial value problem

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad(-\infty<x<\infty) \\
& u(x, 0)=\delta(x-\tilde{x})
\end{aligned}
$$

where $\delta(x)$ is the Dirac delta function.

Dirac delta function

$\delta(x)$ is a function on \mathbb{R} such that

- $\delta(x)=0$ for all $x \neq 0$,
- $\delta(0)=\infty$,
- $\int_{-\infty}^{\infty} \delta(x) d x=1$.

For any continuous function f and any $x_{0} \in \mathbb{R}$,

$$
\int_{-\infty}^{\infty} f(x) \delta\left(x-x_{0}\right) d x=f\left(x_{0}\right)
$$

$\delta(x)$ is a generalized function (or distribution).
That is, δ is a linear functional on a space of test functions f such that $\delta[f]=f(0)$.

Delta sequence/family

Regular function g can be regarded as a generalized function

$$
f \mapsto \int_{-\infty}^{\infty} f(x) g(x) d x
$$

A delta sequence is a sequence of (sharply peaked) functions g_{1}, g_{2}, \ldots such that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x) g_{n}(x) d x=f(0)
$$

for any test function f (e.g., infinitely smooth and rapidly decaying). That is, $g_{n} \rightarrow \delta$ as $n \rightarrow \infty$ (as generalized functions).
A delta family is a family of functions h_{ε},
$0<\varepsilon \leq \varepsilon_{0}$, such that $\lim _{\varepsilon \rightarrow 0} h_{\varepsilon}=\delta$.

Initial value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad(-\infty<x<\infty) \\
& u(x, 0)=\delta(x-\tilde{x})
\end{aligned}
$$

The initial condition means that $g_{t}(x)=u(x+\tilde{x}, t)$ ought to be a delta family. Indeed, if $u(x, t)=G(x, \tilde{x}, t)$, then

$$
g_{t}(x)=\frac{1}{\sqrt{4 \pi k t}} e^{-x^{2} /(4 k t)}
$$

Now suppose that

$$
u(x, t)=\int_{-\infty}^{\infty} G(x, \tilde{x}, t) f(\tilde{x}) d \tilde{x}
$$

where f is a test function (smooth and rapidly decaying).
Then $u(x, t)$ is infinitely smooth for $t>0$ and solves the heat equation. Besides,

$$
\lim _{t \rightarrow 0} u(x, t)=f(x)
$$

Actually, it is sufficient that f be continuous and bounded.

Heat equation on a semi-infinite interval

Initial-boundary value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<\infty) \\
& \frac{\partial u}{\partial x}(0, t)=0 \\
& u(x, 0)=f(x)
\end{aligned}
$$

Solution: $\quad u(x, t)=\int_{0}^{\infty} G_{1}(x, \tilde{x}, t) f(\tilde{x}) d \tilde{x}$,
where $\quad G_{1}(x, \tilde{x}, t)=\frac{1}{\sqrt{4 \pi k t}}\left(e^{-\frac{(x-\tilde{x})^{2}}{4 k t}}+e^{-\frac{(x+\tilde{x})^{2}}{4 k t}}\right)$.

Clearly, $G_{1}(x, \tilde{x}, t)=G(x, \tilde{x}, t)+G(-x, \tilde{x}, t)$.
Since $G(x, \tilde{x}, t)$ is a solution of the heat equation for $t>0$, so are $G(-x, \tilde{x}, t)$ and $G_{1}(x, \tilde{x}, t)$.
By definition, $G_{1}(x, \tilde{x}, t)$ is even as a function of x. Therefore

$$
\frac{\partial G_{1}}{\partial x}(0, \tilde{x}, t)=0
$$

Let f_{1} denote the even extension of the function f to \mathbb{R}, i.e., $f_{1}(x)=f_{1}(-x)=f(x)$ for all $x \geq 0$. Then
$u(x, t)=\int_{0}^{\infty} G_{1}(x, \tilde{x}, t) f(\tilde{x}) d \tilde{x}=\int_{-\infty}^{\infty} G(x, \tilde{x}, t) f_{1}(\tilde{x}) d \tilde{x}$.
It follows that $u(x, t)$ is indeed the solution of the initial-boundary value problem. Again, it is sufficient that f be continuous and bounded.

Heat equation on a finite interval

Initial-boundary value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<L) \\
& u(0, t)=u(L, t)=0 \\
& u(x, 0)=f(x) \quad(0<x<L)
\end{aligned}
$$

Solution: $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\lambda_{n} k t} \sin \frac{n \pi x}{L}$, where $\lambda_{n}=(n \pi / L)^{2}$,

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(\tilde{x}) \sin \frac{n \pi \tilde{x}}{L} d \tilde{x}
$$

For $t>0$ we obtain

$$
\begin{gathered}
u(x, t)=\frac{2}{L} \sum_{n=1}^{\infty} e^{-\lambda_{n} k t} \sin \frac{n \pi x}{L} \int_{0}^{L} f(\tilde{x}) \sin \frac{n \pi \tilde{x}}{L} d \tilde{x} \\
=\int_{0}^{L} G_{2}(x, \tilde{x}, t) f(\tilde{x}) d \tilde{x}
\end{gathered}
$$

where

$$
G_{2}(x, \tilde{x}, t)=\frac{2}{L} \sum_{n=1}^{\infty} e^{-\lambda_{n} k t} \sin \frac{n \pi x}{L} \sin \frac{n \pi \tilde{x}}{L}
$$

