
Math 412-501

Theory of Partial Differential Equations

Lecture 4-3: Green’s functions
for the heat and wave equations.



Distributions

Class of test functions S: consists of infinitely
smooth, rapidly decaying functions on R.
To be precise, f ∈ S if sup |xk f (m)(x)| < ∞ for any
integers k , m ≥ 0.

Convergence in S: we say that fn → f in S as
n → ∞ if sup |x |k |f (m)

n (x) − f (m)(x)| → 0 as
n → ∞ for any integers k , m ≥ 0.

Class of distributions S ′: consists of continuous
linear functionals on S. That is, a linear map
ℓ : S → R belongs to S ′ if ℓ[fn] → ℓ[f ] whenever
fn → f in S.

Convergence in S ′: we say that ℓn → ℓ in S ′ if
ℓn[f ] → ℓ[f ] for any f ∈ S.



Examples. (i) Delta function δ[f ] = f (0).

(ii) Shifted δ-function δx0
(x) = δ(x − x0),

δx0
[f ] = f (x0).

(iii) Let g be a bounded, locally integrable function
on R. Then

f 7→
∫ ∞

−∞
f (x)g(x) dx

is a distribution, which is identified with g .



How to differentiate a distribution

Let γ be a distribution. Then S ∋ f 7→ −γ[f ′] is
also a distribution, which is denoted γ′ and called
the derivative of γ (in S ′).

If g is a piecewise differentiable bounded function
on R then the derivative in S ′ coincides with the
usual derivative as

∫ ∞

−∞
f (x)g ′(x) dx = −

∫ ∞

−∞
f ′(x)g(x) dx

for any test function f ∈ S.

Example. H(x) = 0 for x < 0 and H(x) = 1 for
x > 0 (Heaviside step function).
We have that H ′ = δ.



How to Fourier transform a distribution

F [δ](ω) =
1

2π

∫ ∞

−∞
δ(x)e−iωx dx =

1

2π
.

Let g be an absolutely integrable function and f be
a test function. Then

∫ ∞

−∞
f (x)F [g ](x) dx =

∫ ∞

−∞
F [f ](x) g(x) dx

(alternative form of Parseval’s identity)

Let γ be a distribution. Then S ∋ f 7→ γ[F [f ]] is
also a distribution, which is denoted F [γ] or γ̂ and
called the Fourier transform of γ (in S ′).

In the case when γ is an absolutely integrable
function, both definitions of F [γ] agree.



For any test function f ∈ S,

δ̂[f ] = δ[F [f ]] = F [f ](0) =
1

2π

∫ ∞

−∞
f (x) dx .

Thus F [δ] is indeed the constant function 1/(2π).

Naive approach does not always work:

F−1[1](x) =

∫ ∞

−∞
e iωx dω = ??? = 2π δ(x).

However,

gL(x) =

∫
L

−L

e iωx dω =
e iLx − e−iLx

ix
=

2 sin Lx

x
,

and functions (2π)−1gL form a delta family as L → ∞.



Green’s function for the heat equation

Green’s function G (x , t; x0, t0) for the infinite
interval describes heat conduction in an infinite rod
caused by an instant point-like heat source which
acts at time t0 at the point x0 and generates the
unit amount of heat energy.

Formally, G solves the equation

∂G

∂t
= k

∂2G

∂x2
+ δ(x − x0) δ(t − t0)

subject to the condition

G (x , t; x0, t0) = 0 for t < t0.

(causality principle)



Apply the Fourier transform (relative to x) to both
sides of the equation:

Fx

[
∂G

∂t

]
= k Fx

[
∂2G

∂x2

]
+ Fx [δ(x − x0)] δ(t − t0).

Let Ĝ (ω, t; x0, t0) denote the Fourier transform of G

relative to x :

Ĝ (ω, t; x0, t0) =
1

2π

∫ ∞

−∞
G (x , t; x0, t0)e

−iωx dx .

Fx

[
∂G

∂t

]
=

∂Ĝ

∂t
, Fx

[
∂2G

∂x2

]
= (iω)2Ĝ = −ω2Ĝ ,

Fx [δ(x − x0)](ω) =
1

2π
e−iωx0.



=⇒ ∂Ĝ

∂t
= −kω2Ĝ +

e−iωx0

2π
δ(t − t0).

Causality principle implies that

Ĝ (ω, t; x0, t0) = 0 for t < t0.

It follows that

Ĝ (ω, t; x0, t0) =

{
0 for t < t0,

c(ω, x0, t0)e
−kω

2
t for t > t0;

Ĝ (ω, t; x0, t0)
∣∣
t=t0+

− Ĝ (ω, t; x0, t0)
∣∣
t=t0−=

e−iωx0

2π
.

Hence c(ω, x0, t0) =
e−iωx0

2π
ekω

2
t0.



Then Ĝ (ω, t; x0, t0) =
e−iωx0

2π
e−kω

2(t−t0) for t > t0.

So for t > t0 we obtain

G (x , t; x0, t0) =

∫ ∞

−∞

e−iωx0

2π
e−kω

2(t−t0) e iωx dω

=
1

2π

∫ ∞

−∞
e−kω

2(t−t0) e iω(x−x0) dω

=
1

2π

√
π

k(t − t0)
e
− (x−x0)2

4k(t−t0) =
1√

4πk(t − t0)
e
− (x−x0)2

4k(t−t0) .





General nonhomogeneous problem

Initial value problem:

∂u

∂t
= k

∂2u

∂x2
+ Q(x , t) (−∞ < x < ∞, t > 0),

u(x , 0) = f (x).

Solution: u(x , t) =

=

∫ ∞

0

∫ ∞

−∞
G (x , t; x0, t0) Q(x0, t0) dx0 dt0

+

∫ ∞

−∞
G (x , t; x0, 0) f (x0) dx0.



General nonhomogeneous problem

Initial value problem:

∂u

∂t
= k

∂2u

∂x2
+ Q(x , t) (−∞ < x < ∞, t > 0),

u(x , 0) = f (x).

Solution: u(x , t) =

=

∫
t

0

∫ ∞

−∞

1√
4πk(t − t0)

e
− (x−x0)2

4k(t−t0) Q(x0, t0) dx0 dt0

+

∫ ∞

−∞

1√
4πkt

e−
(x−x0)2

4kt f (x0) dx0.



Green’s function for the wave equation

Green’s function G (x , t; x0, t0) for the infinite
interval describes vibrations of an infinite string
caused by an instant unit force which is applied at
time t0 to the point x0.

Formally, G solves the equation

∂2G

∂t2
= c2 ∂2G

∂x2
+ δ(x − x0) δ(t − t0)

subject to the condition

G (x , t; x0, t0) = 0 for t < t0.

(causality principle)


