
Math 412-501

Theory of Partial Differential Equations

Lecture 4-5:
Uniqueness of solutions of PDEs.

The maximum principle.



Uniqueness of solutions of PDEs

Principal idea: under some natural, non-restrictive
conditions the initial/boundary value problems for
the heat, wave, and Laplace’s equations have unique
solutions.

Theorem The initial-boundary value problem for
the heat equation

∂u

∂t
= k

∂2u

∂x2
+ Q(x , t) (0 < x < L, 0 < t < T ),

u(x , 0) = f (x) (0 < x < L),
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has at most one solution that is twice differentiable
on [0, L] × [0, T ].



Proof: Suppose u1 and u2 are two solutions.
Let w = u1 − u2. Then
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Since E (t) ≥ 0 and E (0) = 0, it follows that

E = 0 =⇒ w = 0 =⇒ u1 = u2.



The maximum principle

Theorem Let D ⊂ R
2 be a bounded domain and

u : D → R be a continuous function on the closure
D = D ∪ ∂D.

If u is twice differentiable in D and ∇2u ≥ 0 then

max
x∈D

u(x) = max
x∈∂D

u(x).

(the maximum is attained on the boundary)

Corollary 1 If ∇2u = 0 then the maximum and
the minimum of u in D are both attained on the
boundary ∂D.

Proof: Since ∇2u = 0, the theorem applies to both
u and −u.



Corollary 2 If ∇2u = 0 and u = 0 on the
boundary ∂D, then u = 0 in D as well.

Corollary 3 Given functions Q : D → R and
f : ∂D → R, the boundary value problem

∇2u = Q in the domain D,

u = f on the boundary ∂D

has at most one solution that is twice differentiable
in D and continuous on the closure D.

Proof: Suppose u1 and u2 are two solutions. Let
w = u1 − u2. Then ∇2w = 0 in D and w = 0 on
∂D. By Corollary 2, w = 0 in D, i.e., u1 = u2.



Proof of the maximum principle

Lemma 1 Let f : (a, b) → R be a twice
differentiable function. If f has a local maximum at
a point c ∈ (a, b), then f ′(c) = 0, f ′′(c) ≤ 0.

Lemma 2 Let u be a twice differentiable function
on the domain D. If ∇2u > 0 then u has no local
maximum in D.

Proof: Suppose that u has a local maximum at
some point (x0, y0) ∈ D. Then the function
f (x) = u(x , y0) has a local maximum at x0 while
g(y) = u(x0, y) has a local maximum at y0.
By Lemma 1, f ′′(x0) ≤ 0, g ′′(y0) ≤ 0. Then
∇2u(x0, y0) = f ′′(x0) + g ′′(y0) ≤ 0, a contradiction.



Proof of Theorem: Suppose u is continuous on D

and ∇2u ≥ 0 in D. Let w(x , y) = x2 + y 2.
Then ∇2w = 4. For any ε > 0 let uε = u + εw .
Then ∇2uε = ∇2u + 4ε > 0 in D.

By Lemma 2, uε has no local maximum in D. Hence

sup
D

uε ≤ max
∂D

uε.

But max∂D uε ≤ max∂D u + ε max∂D w and
supD u ≤ supD uε. Therefore

sup
D

u ≤ max
∂D

u + ε max
∂D

w .

Since ε can be chosen arbitrarily small, we have

sup
D

u ≤ max
∂D

u.



Mean value theorem

The value of a harmonic function at any point P is
the average of its values along any circle centered at P .

∇2u = 0 in D =⇒ u(P) =
1

2πr0

∮

C (P,r0)={x:|x−P|=r0}

u(x) ds



Proof: Introduce the polar coordinates r , θ with
the origin at P . Let f (θ) = u(r0, θ), −π < θ ≤ π.
Then u is the solution of the boundary value problem

∇2u = 0 (0 ≤ r < r0),

u(r0, θ) = f (θ).

Solution:

u(r , θ) = a0 +
∑∞

n=1

( r

r0

)n

(an cos nθ + bn sin nθ),

where a0 +
∑∞

n=1(an cos nθ + bn sin nθ) is the

Fourier series of f (θ).

Now u(P) = u(0, θ) = a0 =
1

2π

∫ π

−π

f (θ) dθ.


