Math 412-501 Theory of Partial Differential Equations Lecture 4-5: Uniqueness of solutions of PDEs. The maximum principle.

Uniqueness of solutions of PDEs

Principal idea: under some natural, non-restrictive conditions the initial/boundary value problems for the heat, wave, and Laplace's equations have unique solutions.

Theorem The initial-boundary value problem for the heat equation

$$\begin{split} &\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + Q(x,t) \quad (0 < x < L, \ 0 < t < T), \\ &u(x,0) = f(x) \quad (0 < x < L), \\ &u(0,t) = A(t), \quad u(L,t) = B(t) \quad (0 < t < T) \end{split}$$

has at most one solution that is twice differentiable on $[0, L] \times [0, T]$.

Proof: Suppose
$$u_1$$
 and u_2 are two solutions.
Let $w = u_1 - u_2$. Then
 $\frac{\partial w}{\partial t} = k \frac{\partial^2 w}{\partial x^2}$ ($0 < x < L, 0 < t < T$),
 $w(x,0) = 0$, $w(0,t) = w(L,t) = 0$.
Let $E(t) = \int_0^L |w(x,t)|^2 dx$. Then
 $E'(t) = 2 \int_0^L w \frac{\partial w}{\partial t} dx = 2k \int_0^L w \frac{\partial^2 w}{\partial x^2} dx$
 $= 2kw \frac{\partial w}{\partial x} \Big|_{x=0}^L -2k \int_0^L (\frac{\partial w}{\partial x})^2 dx \le 0$.
Since $E(t) \ge 0$ and $E(0) = 0$, it follows that
 $E = 0 \implies w = 0 \implies u_1 = u_2$.

E 990

The maximum principle

Theorem Let $D \subset \mathbb{R}^2$ be a bounded domain and $u : \overline{D} \to \mathbb{R}$ be a continuous function on the closure $\overline{D} = D \cup \partial D$.

If *u* is twice differentiable in *D* and $\nabla^2 u \ge 0$ then

$$\max_{\mathbf{x}\in\overline{D}}u(\mathbf{x})=\max_{\mathbf{x}\in\partial D}u(\mathbf{x}).$$

(the maximum is attained on the boundary)

Corollary 1 If $\nabla^2 u = 0$ then the maximum and the minimum of u in \overline{D} are both attained on the boundary ∂D .

Proof: Since $\nabla^2 u = 0$, the theorem applies to both u and -u.

Corollary 2 If $\nabla^2 u = 0$ and u = 0 on the boundary ∂D , then u = 0 in D as well.

Corollary 3 Given functions $Q: D \to \mathbb{R}$ and $f: \partial D \to \mathbb{R}$, the boundary value problem

$$abla^2 u = Q$$
 in the domain D ,

$$u = f$$
 on the boundary ∂D

has at most one solution that is twice differentiable in D and continuous on the closure \overline{D} .

Proof: Suppose u_1 and u_2 are two solutions. Let $w = u_1 - u_2$. Then $\nabla^2 w = 0$ in D and w = 0 on ∂D . By Corollary 2, w = 0 in D, i.e., $u_1 = u_2$.

Proof of the maximum principle

Lemma 1 Let $f : (a, b) \to \mathbb{R}$ be a twice differentiable function. If f has a local maximum at a point $c \in (a, b)$, then f'(c) = 0, $f''(c) \le 0$.

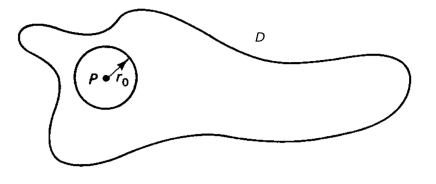
Lemma 2 Let *u* be a twice differentiable function on the domain *D*. If $\nabla^2 u > 0$ then *u* has no local maximum in *D*.

Proof: Suppose that u has a local maximum at some point $(x_0, y_0) \in D$. Then the function $f(x) = u(x, y_0)$ has a local maximum at x_0 while $g(y) = u(x_0, y)$ has a local maximum at y_0 . By Lemma 1, $f''(x_0) \leq 0$, $g''(y_0) \leq 0$. Then $\nabla^2 u(x_0, y_0) = f''(x_0) + g''(y_0) \leq 0$, a contradiction.

Proof of Theorem: Suppose u is continuous on \overline{D} and $\nabla^2 u > 0$ in *D*. Let $w(x, y) = x^2 + y^2$. Then $\nabla^2 w = 4$. For any $\varepsilon > 0$ let $u_{\varepsilon} = u + \varepsilon w$. Then $\nabla^2 u_{\varepsilon} = \nabla^2 u + 4\varepsilon > 0$ in *D*. By Lemma 2, u_{ε} has no local maximum in D. Hence $\sup_{D} u_{\varepsilon} \leq \max_{\partial D} u_{\varepsilon}.$ But $\max_{\partial D} u_{\varepsilon} \leq \max_{\partial D} u + \varepsilon \max_{\partial D} w$ and $\sup_{D} u \leq \sup_{D} u_{\varepsilon}$. Therefore $\sup_{D} u \leq \max_{\partial D} u + \varepsilon \max_{\partial D} w.$ Since ε can be chosen arbitrarily small, we have $\sup u \leq \max u$.

Mean value theorem

The value of a harmonic function at any point P is the average of its values along any circle centered at P.



 $\nabla^2 u = 0 \text{ in } D \implies u(P) = \frac{1}{2\pi r_0} \oint_{C(P,r_0) = \{\mathbf{x}: |\mathbf{x}-P|=r_0\}} u(\mathbf{x}) \, ds$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Proof: Introduce the polar coordinates r, θ with the origin at P. Let $f(\theta) = u(r_0, \theta), -\pi < \theta \le \pi$. Then u is the solution of the boundary value problem

$$abla^2 u = 0 \quad (0 \leq r < r_0),
u(r_0, \theta) = f(\theta).$$

Solution:

$$u(r,\theta) = a_0 + \sum_{n=1}^{\infty} \left(\frac{r}{r_0}\right)^n (a_n \cos n\theta + b_n \sin n\theta),$$

where $a_0 + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta)$ is the Fourier series of $f(\theta)$.

Now
$$u(P) = u(0, \theta) = a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \, d\theta.$$