Math 412-501
 Theory of Partial Differential Equations

Lecture 4-5:
Uniqueness of solutions of PDEs. The maximum principle.

Uniqueness of solutions of PDEs

Principal idea: under some natural, non-restrictive conditions the initial/boundary value problems for the heat, wave, and Laplace's equations have unique solutions.

Theorem The initial-boundary value problem for the heat equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+Q(x, t) \quad(0<x<L, 0<t<T) \\
& u(x, 0)=f(x) \quad(0<x<L) \\
& u(0, t)=A(t), \quad u(L, t)=B(t) \quad(0<t<T)
\end{aligned}
$$

has at most one solution that is twice differentiable on $[0, L] \times[0, T]$.

Proof: Suppose u_{1} and u_{2} are two solutions.
Let $w=u_{1}-u_{2}$. Then

$$
\begin{array}{lc}
\frac{\partial w}{\partial t}=k \frac{\partial^{2} w}{\partial x^{2}} & (0<x<L, 0<t<T) \\
w(x, 0)=0, & w(0, t)=w(L, t)=0
\end{array}
$$

Let $E(t)=\int_{0}^{L}|w(x, t)|^{2} d x$. Then

$$
\begin{aligned}
& E^{\prime}(t)=2 \int_{0}^{L} w \frac{\partial w}{\partial t} d x=2 k \int_{0}^{L} w \frac{\partial^{2} w}{\partial x^{2}} d x \\
& =\left.2 k w \frac{\partial w}{\partial x}\right|_{x=0} ^{L}-2 k \int_{0}^{L}\left(\frac{\partial w}{\partial x}\right)^{2} d x \leq 0
\end{aligned}
$$

Since $E(t) \geq 0$ and $E(0)=0$, it follows that

$$
E=0 \Longrightarrow w=0 \Longrightarrow u_{1}=u_{2} .
$$

The maximum principle

Theorem Let $D \subset \mathbb{R}^{2}$ be a bounded domain and $u: \bar{D} \rightarrow \mathbb{R}$ be a continuous function on the closure $\bar{D}=D \cup \partial D$.

If u is twice differentiable in D and $\nabla^{2} u \geq 0$ then

$$
\max _{\mathbf{x} \in \bar{D}} u(\mathbf{x})=\max _{\mathbf{x} \in \partial D} u(\mathbf{x}) .
$$

(the maximum is attained on the boundary)
Corollary 1 If $\nabla^{2} u=0$ then the maximum and the minimum of u in \bar{D} are both attained on the boundary ∂D.
Proof: Since $\nabla^{2} u=0$, the theorem applies to both u and $-u$.

Corollary 2 If $\nabla^{2} u=0$ and $u=0$ on the boundary ∂D, then $u=0$ in D as well.

Corollary 3 Given functions $Q: D \rightarrow \mathbb{R}$ and $f: \partial D \rightarrow \mathbb{R}$, the boundary value problem
$\nabla^{2} u=Q$ in the domain D, $u=f$ on the boundary ∂D
has at most one solution that is twice differentiable in D and continuous on the closure \bar{D}.

Proof: Suppose u_{1} and u_{2} are two solutions. Let $w=u_{1}-u_{2}$. Then $\nabla^{2} w=0$ in D and $w=0$ on
∂D. By Corollary $2, w=0$ in D, i.e., $u_{1}=u_{2}$.

Proof of the maximum principle

Lemma 1 Let $f:(a, b) \rightarrow \mathbb{R}$ be a twice differentiable function. If f has a local maximum at a point $c \in(a, b)$, then $f^{\prime}(c)=0, f^{\prime \prime}(c) \leq 0$.
Lemma 2 Let u be a twice differentiable function on the domain D. If $\nabla^{2} u>0$ then u has no local maximum in D.

Proof: Suppose that u has a local maximum at some point $\left(x_{0}, y_{0}\right) \in D$. Then the function $f(x)=u\left(x, y_{0}\right)$ has a local maximum at x_{0} while $g(y)=u\left(x_{0}, y\right)$ has a local maximum at y_{0}.
By Lemma 1, $f^{\prime \prime}\left(x_{0}\right) \leq 0, g^{\prime \prime}\left(y_{0}\right) \leq 0$. Then $\nabla^{2} u\left(x_{0}, y_{0}\right)=f^{\prime \prime}\left(x_{0}\right)+g^{\prime \prime}\left(y_{0}\right) \leq 0$, a contradiction.

Proof of Theorem: Suppose u is continuous on \bar{D} and $\nabla^{2} u \geq 0$ in D. Let $w(x, y)=x^{2}+y^{2}$.
Then $\nabla^{2} w=4$. For any $\varepsilon>0$ let $u_{\varepsilon}=u+\varepsilon w$.
Then $\nabla^{2} u_{\varepsilon}=\nabla^{2} u+4 \varepsilon>0$ in D.
By Lemma 2, u_{ε} has no local maximum in D. Hence

$$
\sup _{D} u_{\varepsilon} \leq \max _{\partial D} u_{\varepsilon}
$$

But $\max _{\partial D} u_{\varepsilon} \leq \max _{\partial D} u+\varepsilon \max _{\partial D} w$ and $\sup _{D} u \leq \sup _{D} u_{\varepsilon}$. Therefore

$$
\sup _{D} u \leq \max _{\partial D} u+\varepsilon \max _{\partial D} w .
$$

Since ε can be chosen arbitrarily small, we have

$$
\sup _{D} u \leq \max _{\partial D} u .
$$

Mean value theorem

The value of a harmonic function at any point P is the average of its values along any circle centered at P.

$$
\nabla^{2} u=0 \text { in } D \Longrightarrow u(P)=\frac{1}{2 \pi r_{0}} \oint_{C\left(P, r_{0}\right)=\left\{\mathbf{x}:|x-P|=r_{0}\right\}} u(\mathbf{x}) d s
$$

Proof: Introduce the polar coordinates r, θ with the origin at P. Let $f(\theta)=u\left(r_{0}, \theta\right),-\pi<\theta \leq \pi$.
Then u is the solution of the boundary value problem

$$
\begin{aligned}
& \nabla^{2} u=0 \quad\left(0 \leq r<r_{0}\right) \\
& u\left(r_{0}, \theta\right)=f(\theta)
\end{aligned}
$$

Solution:

$$
u(r, \theta)=a_{0}+\sum_{n=1}^{\infty}\left(\frac{r}{r_{0}}\right)^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

where $a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)$ is the Fourier series of $f(\theta)$.
Now $u(P)=u(0, \theta)=a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta$.

