
Math 412-501

Theory of Partial Differential Equations

Lecture 4-6:
Review for the final exam.



Math 412-501 Fall 2006
Sample problems for the final exam

Any problem may be altered or replaced by a different one!

Some possibly useful information

• Parseval’s equality for the complex form of the Fourier series
on (−π, π):

f (x) =
∞
∑

n=−∞

cne
inx =⇒

∫ π

−π

|f (x)|2 dx = 2π
∞
∑

n=−∞

|cn|2.

• Fourier sine and cosine transforms of the second derivative:

S [f ′′](ω) =
2

π
f (0) ω − ω

2S [f ](ω),

C [f ′′](ω) = − 2

π
f ′(0) − ω

2C [f ](ω).



• Laplace’s operator in polar coordinates r , θ:

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
.

• Any nonzero solution of a regular Sturm-Liouville equation

(pφ′)′ + qφ + λσφ = 0 (a < x < b)

satisfies the Rayleigh quotient relation

λ =

−pφφ′
∣

∣

∣

b

a

+

∫

b

a

(

p(φ′)2 − qφ2
)

dx

∫

b

a

φ2σ dx

.



• Some table integrals:

∫

x2e iax dx =

(

x2

ia
+

2x

a2
− 2

ia3

)

e iax + C , a 6= 0;

∫ ∞

−∞
e−αx2

e iβx dx =

√

π

α
e−β2/(4α), α > 0, β ∈ R;

∫ ∞

−∞
e−α|x |e iβx dx =

2α

α2 + β2
, α > 0, β ∈ R.



Problem 1 Let f (x) = x2.

(i) Find the Fourier series (complex form) of f (x) on the interval
(−π, π).
(ii) Rewrite the Fourier series of f (x) in the real form.
(iii) Sketch the function to which the Fourier series converges.
(iv) Use Parseval’s equality to evaluate

∑∞
n=1 n−4.



Problem 1 Let f (x) = x2.

(i) Find the Fourier series (complex form) of f (x) on the interval
(−π, π).

The required series is
∞
∑

n=−∞

cne
inx , where

cn =
1

2π

∫ π

−π
f (x)e−inx dx .

In particular,

c0 =
1

2π

∫ π

−π
f (x) dx =

1

2π

∫ π

−π
x2 dx =

1

2π

x3

3

∣

∣

∣

π

−π
=

1

2π

2π3

3
=

π2

3
.

If n 6= 0 then we have to integrate by parts twice.



To save time, we could instead use the table integral

∫

x2e iax dx =

(

x2

ia
+

2x

a2
− 2

ia3

)

e iax + C , a 6= 0.

According to this integral,

cn =
1

2π

∫ π

−π
x2e−inx dx =

1

2π

(

−x2

in
+

2x

n2
+

2

in3

)

e−inx

∣

∣

∣

π

−π

=
1

2π

2π(e−inπ + e inπ)

n2
=

2(−1)n

n2
.

Thus

x2 ∼ π2

3
+

∑

−∞<n<∞
n 6=0

2(−1)n

n2
e inx .



(ii) Rewrite the Fourier series of f (x) in the real form.

π2

3
+

∑

−∞<n<∞
n 6=0

2(−1)n

n2
e inx =

π2

3
+

∞
∑

n=1

2(−1)n

n2
(e inx + e−inx)

=
π2

3
+

∞
∑

n=1

4(−1)n

n2
cos nx .

Thus

x2 ∼ π2

3
+

∞
∑

n=1

4(−1)n

n2
cos nx .



(iii) Sketch the function to which the Fourier series converges.

The series converges to the 2π-periodic function that coincides
with f (x) for −π ≤ x ≤ π.

The sum is continuous and piecewise smooth hence the
convergence is uniform.

The derivative of the sum has jump discontinuities at points
π + 2kπ, k ∈ Z.

The graph is a scalloped curve.



(iv) Use Parseval’s equality to evaluate
∑∞

n=1 n−4.

In our case, Parseval’s equality can be written as

〈f , f 〉 =
∞
∑

n=−∞

|〈f , φn〉|2
〈φn, φn〉

,

where φn(x) = e inx and

〈g , h〉 =

∫ π

−π
g(x)h(x) dx .

Since cn = 〈f ,φn〉
〈φn,φn〉

and 〈φn, φn〉 = 2π for all n ∈ Z, it can be
reduced to an equivalent form

∫ π

−π
|f (x)|2 dx = 2π

∞
∑

n=−∞

|cn|2.



Now
∫ π

−π
|f (x)|2 dx =

∫ π

−π
x4 dx =

x5

5

∣

∣

∣

π

−π
=

2π5

5
,

∞
∑

n=−∞

|cn|2 =
π4

9
+ 2

∞
∑

n=1

4

n4
.

Therefore
1

2π

2π5

5
=

π4

9
+ 2

∞
∑

n=1

4

n4
.

It follows that

∞
∑

n=1

1

n4
=

1

8

(

π4

5
− π4

9

)

=
π4

90
.



Problem 2 Solve Laplace’s equation in a disk,

∇2u = 0 (0 ≤ r < a), u(a, θ) = f (θ).

Laplace’s operator in polar coordinates r , θ:

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
.

We search for the solution of the boundary value problem as a
superposition of solutions u(r , θ) = h(r)φ(θ) with separated
variables.

Solutions with separated variables satisfy periodic boundary
conditions

u(r ,−π) = u(r , π),
∂u

∂θ
(r ,−π) =

∂u

∂θ
(r , π)

and the singular boundary condition

|u(0, θ)| < ∞.



Separation of variables provides the following solutions:

u0 = 1, un(r , θ) = rn cos nθ, ũn(r , θ) = rn sin nθ, n = 1, 2, . . .

A superposition of these solutions is a series

u(r , θ) = α0 +
∑∞

n=1
rn(αn cos nθ + βn sin nθ),

where α0, α1, . . . and β1, β2, . . . are constants. Substituting the
series into the boundary condition u(a, θ) = f (θ), we get

f (θ) = α0 +
∑∞

n=1
an(αn cos nθ + βn sin nθ).

The boundary condition is satisfied if the right-hand side coincides
with the Fourier series

A0 +
∑∞

n=1
(An cos nθ + Bn sin nθ)

of the function f (θ) on (−π, π).



Hence

α0 = A0, αn = a−nAn, βn = a−nBn, n = 1, 2, . . .

and

u(r , θ) = A0 +
∑∞

n=1

( r

a

)n

(An cos nθ + Bn sin nθ),

where

A0 =
1

2π

∫ π

−π
f (θ) dθ, An =

1

π

∫ π

−π
f (θ) cos nθ dθ,

Bn =
1

π

∫ π

−π
f (θ) sin nθ dθ, n = 1, 2, . . .



Bonus Problem 7 Find a Green function implementing the
solution of Problem 2.

The solution of Problem 2:

u(r , θ) = A0 +
∞
∑

n=1

( r

a

)n

(An cos nθ + Bn sin nθ),

where

A0 =
1

2π

∫ π

−π
f (θ0) dθ0, An =

1

π

∫ π

−π
f (θ0) cos nθ0 dθ0,

Bn =
1

π

∫ π

−π
f (θ0) sin nθ0 dθ0, n = 1, 2, . . .

It can be rewritten as

u(r , θ) =

∫ π

−π
G (r , θ; θ0) f (θ0) dθ0,

where

G (r , θ; θ0) =
1

2π
+

1

π

∞
∑

n=1

( r

a

)n

(cos nθ cos nθ0 + sin nθ sin nθ0).



This is the desired Green function. The expression can be
simplified:

G (r , θ; θ0) =
1

2π
+

1

π

∞
∑

n=1

( r

a

)n

(cos nθ cos nθ0 + sin nθ sin nθ0)

=
1

2π
+

1

π

∞
∑

n=1

( r

a

)n

cos n(θ − θ0)

=
1

2π
+

1

π

∞
∑

n=1

( r

a

)n

· e in(θ−θ0) + e−in(θ−θ0)

2

=
1

2π

∞
∑

n=0

(

ra−1e i(θ−θ0)
)n

+
1

2π

∞
∑

n=1

(

ra−1e−i(θ−θ0)
)n



G (r , θ; θ0) =
1

2π

(

1

1 − ra−1e i(θ−θ0)
+

ra−1e−i(θ−θ0)

1 − ra−1e−i(θ−θ0)

)

=
1

2π

(

a

a − re i(θ−θ0)
+

re−i(θ−θ0)

a − re−i(θ−θ0)

)

=
1

2π

a2 − r2

(a − re i(θ−θ0))(a − re−i(θ−θ0))

=
1

2π

a2 − r2

a2 − 2ar cos(θ − θ0) + r2
.

(Poisson’s formula)



Problem 3 Find Green’s function for the boundary value problem

d2u

dx2
− u = f (x) (0 < x < 1), u′(0) = u′(1) = 0.

The Green function G (x , x0) should satisfy

∂2G

∂x2
− G = δ(x − x0),

∂G

∂x
(0, x0) =

∂G

∂x
(1, x0) = 0.

It follows that

G (x , x0) =

{

aex + be−x for x < x0,

cex + de−x for x > x0,

where constants a, b, c , d may depend on x0. Then

∂G

∂x
(x , x0) =

{

aex − be−x for x < x0,

cex − de−x for x > x0.



The boundary conditions imply that a = b and ce = de−1.

Gluing conditions at x = x0 are continuity of the function and
jump discontinuity of the first derivative:

G (x , x0)
∣

∣

x=x0−
= G (x , x0)

∣

∣

x=x0+
,

∂G

∂x

∣

∣

∣

x=x0+
−∂G

∂x

∣

∣

∣

x=x0−
= 1.

The two conditions imply that

aex0 +be−x0 = cex0 +de−x0 , cex0 −de−x0 −(aex0 −be−x0) = 1.

Now we have 4 equations to determine 4 quantities a, b, c , d .

Solution:

c =
ex0 + e−x0

2(1 − e2)
, a =

ex0 + e2−x0

2(1 − e2)
,

d =
ex0 + e−x0

2(e−2 − 1)
, b =

ex0 + e2−x0

2(1 − e2)
.



Finally,

G (x , x0) =



















(ex0 + e2−x0)(ex + e−x)

2(1 − e2)
for x < x0,

(ex0 + e−x0)(ex + e2−x)

2(1 − e2)
for x > x0.

Observe that G (x , x0) = G (x0, x).



Problem 4 Solve the initial-boundary value problem for the heat
equation,

∂u

∂t
=

∂2u

∂x2
(0 < x < π, t > 0),

u(x , 0) = f (x) (0 < x < π),

u(0, t) = 0,
∂u

∂x
(π, t) + 2u(π, t) = 0.

In the process you will discover a sequence of eigenfunctions and
eigenvalues, which you should name φn(x) and λn.

Describe the λn qualitatively (e.g., find an equation for them) but
do not expect to find their exact numerical values.

Also, do not bother to evaluate normalization integrals for φn.



We search for the solution of the initial-boundary value problem as
a superposition of solutions u(x , t) = φ(x)g(t) with separated
variables of the heat equation that satisfy the boundary conditions.

We get an equation for g :

g ′ = −λg =⇒ g(t) = c0e
−λt ,

and an eigenvalue problem for φ:

φ′′ = −λφ, φ(0) = 0, φ′(π) + 2φ(π) = 0.

This is a regular Sturm-Liouville eigenvalue problem.

Rayleigh quotient:

λ =

−φφ′
∣

∣

∣

π

0
+

∫ π

0
|φ′(x)|2 dx

∫ π

0
|φ(x)|2 dx

.

Note that −φφ′
∣

∣

π

0
= φ(0)φ′(0) − φ(π)φ′(π) = 2|φ(π)|2.

It follows that λ > 0.



The eigenvalues 0 < λ1 < λ2 < . . . are solutions of the equation

−1

2

√
λ = tan(

√
λ π),

and the corresponding eigenfunctions are φn(x) = sin(
√

λn x).

Solutions with separated variables:

un(x , t) = e−λntφn(x) = e−λnt sin(
√

λn x), n = 1, 2, . . .

A superposition of these solutions is a series

u(x , t) =
∑∞

n=1
cne

−λntφn(x) =
∑∞

n=1
cne

−λnt sin(
√

λn x),

where c1, c2, . . . are constants. Substituting the series into the
initial condition u(x , 0) = f (x), we get

f (x) =
∑∞

n=1
cnφn(x).

The initial condition is satisfied if the right-hand side coincides
with the generalized Fourier series of the function f , that is, if

cn =
〈f , φn〉
〈φn, φn〉

, n = 1, 2, . . .



Problem 5 By the method of your choice, solve the wave
equation on the half-line

∂2u

∂t2
=

∂2u

∂x2
(0 < x < ∞, −∞ < t < ∞)

subject to

u(0, t) = 0, u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x).

Bonus Problem 6 Solve Problem 5 by a distinctly different
method.



Fourier’s method: In view of the boundary condition, let us apply
the Fourier sine transform with respect to x to both sides of the
equation:

S

[

∂2u

∂t2

]

= S

[

∂2u

∂x2

]

.

Let

U(ω, t) = S [u(·, t)](ω) =
2

π

∫ ∞

0
u(x , t) sinωx dx .

Then

S

[

∂2u

∂t2

]

=
∂2U

∂t2
, S

[

∂2u

∂x2

]

=
2

π
u(0, t)ω−ω2U(ω, t) = −ω2U(ω, t).

Hence
∂2U

∂t2
= −ω2U(ω, t).



If ω 6= 0 then the general solution of the latter equation is
U(ω, t) = a cos ωt + b sinωt, where a = a(ω), b = b(ω). Applying
the Fourier sine transform to the initial conditions, we obtain

U(ω, 0) = F (ω),
∂U

∂t
(ω, 0) = G (ω),

where F = S [f ], G = S [g ].

It follows that a(ω) = F (ω), b(ω) = G (ω)/ω.

Now it remains to apply the inverse Fourier sine transform:

u(x , t) =

∫ ∞

0

(

F (ω) cos ωt +
G (ω)

ω
sinωt

)

sinωx dω,

where

F (ω) =
2

π

∫ ∞

0
f (x0) sinωx0 dx0, G (ω) =

2

π

∫ ∞

0
g(x0) sinωx0 dx0.



D’Alembert’s method: Define f (x) and g(x) for negative x to be
the odd extensions of the functions given for positive x , i.e.,
f (−x) = −f (x) and g(−x) = −g(x) for all x > 0.

By d’Alembert’s formula, the function

u(x , t) =
1

2

(

f (x + t) + f (x − t)
)

+
1

2

∫

x+t

x−t

g(x0) dx0

is the solution of the wave equation that satisfies the initial
conditions

u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x)

on the entire line.

Since f and g are odd functions, it follows that u(x , t) is also odd
as a function of x . As a consequence, u(0, t) = 0 for all t.


