Homework assignment \#4

Problem 1. Find the order and the sign of the following permutations in S_{8} :

$$
\sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 5 & 6 & 3 & 7 & 4 & 2 & 1
\end{array}\right), \quad \tau=\left(\begin{array}{llllll}
1 & 4 & 5
\end{array}\right)\left(\begin{array}{llllll}
3 & 8 & 6
\end{array}\right)\left(\begin{array}{llllll}
2 & 5 & 7
\end{array}\right) .
$$

Problem 2. Find the maximum possible order for a permutation in S_{10}.

Problem 3. Suppose that a permutation σ is a cycle of odd length. Prove that σ^{2} is also a cycle.

Problem 4. Prove that any permutation in S_{n} different from the identity map can be written as a product of at most $n-1$ transpositions.

Problem 5. Suppose H is a subgroup of the symmetric group S_{n}. Prove that either all permutations in H are even or exactly half of them are even.

Problem 6. Find all cosets of the cyclic subgroup $\langle 3\rangle$ of the group \mathbb{Z}_{12}.

Problem 7. Find all left and right cosets of the cyclic subgroup $\langle(12)\rangle$ of the group S_{3}.

Problem 8. Suppose that H is a subgroup of index 2 in a group G. Show that every left coset of H in G is also a right coset of H.

Problem 9. Consider a permutation $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)(34)$ in S_{5}. Find the index of the cyclic subgroup $\langle\sigma\rangle$ in S_{5}.

Problem 10. Let G be a group of order $p q$, where p and q are prime numbers. Prove that every proper subgroup of G is cyclic.

