Homework assignment \#8

Problem 1 (2 pts). A Gaussian integer is a complex number of the form $m+i n$, where $m, n \in \mathbb{Z}$.
(i) Show that the Gaussian integers form an integral domain.
(ii) Which Gaussian integers have a multiplicative inverse?
(iii) Describe the field of quotients of the Gaussian integers in \mathbb{C}.

Problem 2. Let D be an integral domain. Prove that 1 and -1 are the only elements of D that are their own multiplicative inverse.

Problem 3. Let \mathbb{F} be a finite field. Prove that the product of all nonzero elements of \mathbb{F} equals -1 . [Hint: use the previous problem.]

Problem 4. Prove that for any prime number p, the number $(p-1)!+1$ is divisible by p. [Hint: use the previous problem.]

Problem 5 (2 pts). For any integer $n \geq 2$, determine the remainder after division of the number $(n-1)$! by n.

Problem 6. Determine the remainder after division of the number $2021^{2022^{2023}}$ by 11 .

Problem 7. Find all integer solutions of the equation $15 x-23 y=40$.

Problem 8. Find all integer solutions of the equation $13 x+31 y=3$.

