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Preliminaries.



Cartesian product

Definition. The Cartesian product X × Y of
two sets X and Y is the set of all ordered pairs

(x , y) such that x ∈ X and y ∈ Y .

The Cartesian square X × X is also denoted X 2.

If the sets X and Y are finite, then
#(X × Y ) = (#X )(#Y ), where #S denote the

number of elements in a set S .



Relations

Definition. Let X and Y be sets. A relation R

from X to Y is given by specifying a subset of the
Cartesian product: SR ⊂ X × Y .

If (x , y) ∈ SR , then we say that x is related to y

(in the sense of R or by R) and write xRy .

Remarks. • Usually the relation R is identified
with the set SR .

• In the case X = Y , the relation R is called a
relation on X .



Examples. • “is equal to”
xRy ⇐⇒ x = y

Equivalently, R = {(x , x) | x ∈ X ∩ Y }.

• “is not equal to”
xRy ⇐⇒ x 6= y

• “is mapped by f to”
xRy ⇐⇒ y = f (x), where f : X → Y is a function.
Equivalently, R is the graph of the function f .

• “is the image under f of”
(from Y to X ) yRx ⇐⇒ y = f (x), where f : X → Y is a
function. If f is invertible, then R is the graph of f −1.

• reversed R ′

xRy ⇐⇒ yR ′x , where R ′ is a relation from Y to X .

• not R ′

xRy ⇐⇒ not xR ′y , where R ′ is a relation from X to Y .
Equivalently, R = (X × Y ) \ R ′ (set difference).



Relations on a set
• “is equal to”
xRy ⇐⇒ x = y

• “is not equal to”
xRy ⇐⇒ x 6= y

• “is less than”
X = R, xRy ⇐⇒ x < y

• “is less than or equal to”
X = R, xRy ⇐⇒ x ≤ y

• “is contained in”
X = the set of all subsets of some set Y ,
xRy ⇐⇒ x ⊂ y

• “is congruent modulo n to”
X = Z, xRy ⇐⇒ x ≡ y mod n

• “divides”
X = P, xRy ⇐⇒ x |y



A relation R on a finite set X can be represented by

a directed graph.

Vertices of the graph are elements of X , and we
have a directed edge from x to y if and only if xRy .

Another way to represent the relation R is the

adjacency table.

Rows and columns are labeled by elements of X .

We put 1 at the intersection of a row x with a
column y if xRy . Otherwise we put 0.
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a 0 1 1
b 0 1 1

c 1 0 0

a b c d e

a 0 1 1 0 0
b 0 1 1 0 0
c 0 0 0 1 0
d 0 0 0 0 1
e 1 0 0 0 0



Properties of relations

Definition. Let R be a relation on a set X . We

say that R is
• reflexive if xRx for all x ∈ X ,
• symmetric if, for all x , y ∈ X , xRy implies

yRx ,
• antisymmetric if, for all x , y ∈ X , xRy and

yRx cannot hold simultaneously,
• weakly antisymmetric if, for all x , y ∈ X ,

xRy and yRx imply that x = y ,
• transitive if, for all x , y , z ∈ X , xRy and yRz

imply that xRz .



Partial ordering

Definition. A relation R on a set X is a partial
ordering (or partial order) if R is reflexive, weakly

antisymmetric, and transitive:
• xRx ,
• xRy and yRx =⇒ x = y ,

• xRy and yRz =⇒ xRz .

A relation R on a set X is a strict partial order if
R is antisymmetric and transitive:

• xRy =⇒ not yRx ,
• xRy and yRz =⇒ xRz .

Examples. “is less than or equal to”, “is contained in”, “is a
divisor of” are partial orders. “is less than” is a strict order.



Equivalence relation

Definition. A relation R on a set X is an equivalence
relation if R is reflexive, symmetric, and transitive:
• xRx ,
• xRy =⇒ yRx ,
• xRy and yRz =⇒ xRz .

Examples. “is equal to”, “is congruent modulo n to” are
equivalence relations.

Given an equivalence relation R on X , the equivalence class
of an element x ∈ X relative to R is the set of all elements
y ∈ X such that yRx .

Theorem The equivalence classes form a partition of the set
X , which means that
• any two equivalence classes either coincide, or else they are
disjoint,
• any element of X belongs to some equivalence class.



Functions

A function (or map) f : X → Y is an assignment: to each
x ∈ X we assign an element f (x) ∈ Y .

Definition. A function f : X → Y is injective (or
one-to-one) if f (x ′) = f (x) =⇒ x ′ = x .

The function f is surjective (or onto) if for each y ∈ Y

there exists at least one x ∈ X such that f (x) = y .

Finally, f is bijective if it is both surjective and injective.
Equivalently, if for each y ∈ Y there is exactly one x ∈ X

such that f (x) = y .

Suppose we have two functions f : X → Y and g : Y → X .
We say that g is the inverse function of f (denoted f −1) if
y = f (x) ⇐⇒ g(y ) = x for all x ∈ X and y ∈ Y .

Theorem The inverse function f −1 exists if and only if f is
bijective.
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Definition. The composition of functions f : X → Y and
g : Y → Z is a function from X to Z , denoted g ◦ f , that is
defined by (g ◦ f )(x) = g(f (x)), x ∈ X .

X
f
→ Y

g
→ Z

Properties of compositions:

• If f and g are one-to-one, then g ◦ f is also one-to-one.

• If g ◦ f is one-to-one, then f is also one-to-one.

• If f and g are onto, then g ◦ f is also onto.

• If g ◦ f is onto, then g is also onto.

• If f and g are bijective, then g ◦ f is also bijective.

• If f and g are invertible, then g ◦ f is also invertible and
(g ◦ f )−1 = f −1 ◦ g−1.

• If idZ denotes the identity function on a set Z , then
f ◦ idX = f = idY ◦ f for any function f : X → Y .

• For any functions f : X → Y and g : Y → X , we have
g = f −1 if and only if g ◦ f = idX and f ◦ g = idY .



Cardinality of a set

Definition. Given two sets A and B , we say that A

is of the same cardinality as B if there exists a
bijective function f : A → B . Notation: |A| = |B |.

Theorem The relation “is of the same cardinality

as” is an equivalence relation, i.e., it is reflexive
(|A| = |A| for any set A), symmetric (|A| = |B |

implies |B | = |A|), and transitive (|A| = |B | and
|B | = |C | imply |A| = |C |).

Proof: The identity map idA : A → A is bijective. If f is a
bijection of A onto B , then the inverse map f −1 is a bijection
of B onto A. If f : A → B and g : B → C are bijections
then the composition g ◦ f is a bijection of A onto C .



Countable and uncountable sets

A nonempty set is finite if it is of the same

cardinality as {1, 2, . . . , n} = [1, n] ∩ N for some
n ∈ N. Otherwise it is infinite.

An infinite set is called countable (or countably

infinite) if it is of the same cardinality as N.
Otherwise it is uncountable (or uncountably

infinite).

An infinite set E is countable if it is possible to
arrange all elements of E into a single sequence

(an infinite list) x1, x2, x3, . . . The sequence is
referred to as an enumeration of E .



Countable sets

• 2N: even natural numbers.

Bijection f : N → 2N is given by f (n) = 2n.

• N ∪ {0}: nonnegative integers.

Bijection f : N → N ∪ {0} is given by f (n) = n − 1.

• Z: integers.

Enumeration of all integers: 0, 1,−1, 2,−2, 3,−3, . . .
Equivalently, a bijection f : N → Z is given by f (n) = n/2 if
n is even and f (n) = (1− n)/2 if n is odd.

• E1 ∪ E2, where E1 is finite and E2 is countable.

First we list all elements of E1. Then we append the list of all
elements of E2. If E1 and E2 are not disjoint, we also need to
avoid repetitions in the joint list.



Countable sets

• E1 ∪ E2, where E1 and E2 are countable.

Let x1, x2, x3 . . . be an enumeration of E1 and y1, y2, y3, . . .
be an enumeration of E2. Then x1, y1, x2, y2, . . . enumerates
the union (maybe with repetitions).

• Infinite set E1∪E2∪ . . . , where each En is finite.

First we list all elements of E1. Then we append the list of all
elements of E2. Then we append the list of all elements of E3,
and so on... (and do not forget to avoid repetitions).

• N× N: pairs of natural numbers

• Q: rational numbers

• Algebraic numbers (roots of nonzero
polynomials with integer coefficients).



Theorem (Cantor) The set R is uncountable.

Proof: It is enough to prove that the interval (0, 1) is
uncountable. Assume the contrary. Then all numbers from
(0, 1) can be arranged into an infinite list x1, x2, x3, . . . Any
number x ∈ (0, 1) admits a decimal expansion of the form
0.d1d2d3 . . . , where each di ∈ {0, 1, . . . , 9}. In particular,

x1 = 0.d11d12d13d14d15 . . .
x2 = 0.d21d22d23d24d25 . . .
x3 = 0.d31d32d33d34d35 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

Now for any n ∈ N choose a decimal digit d̃n such that
d̃n 6= dnn and d̃n /∈ {0, 9}. Then 0.d̃1d̃2d̃3 . . . is the decimal
expansion of some number x̃ ∈ (0, 1). By construction, it is
different from all expansions in the list. Although some real
numbers admit two decimal expansions (e.g., 0.50000 . . . and

0.49999 . . . ), the condition d̃n /∈ {0, 9} ensures that x̃ is not
such a number. Thus x̃ is not listed, a contradiction.



Uncountable sets

• Any interval (a, b) is of the same cardinality as

(0, 1).

Bijection f : (0, 1) → (a, b) is given by f (x) = (b − a)x + a.

• All intervals of the form (a, b) have the same
cardinality.

Follows by transitivity since they are all of the same cardinality
as (0, 1).

• All intervals of the form (a,∞) or (−∞, a) are
of the same cardinality as (0,∞).

Bijection f : (0,∞) → (a,∞) is given by f (x) = x + a.
Bijection f : (0,∞) → (−∞, a) is given by f (x) = −x + a.



Uncountable sets

• (0, 1) is of the same cardinality as (1,∞).

Bijection f : (0, 1) → (1,∞) is given by f (x) = x−1.

• (0,∞) is of the same cardinality as R.

Bijection f : R → (0,∞) is given by f (x) = ex .

• [0, 1] is of the same cardinality as (0, 1).

Let x1, x2, x3, . . . be a sequence of distinct points in (0, 1),
say, xn = (n + 1)−1 for all n ∈ N. Then a bijection
f : [0, 1] → (0, 1) is defined as follows: f (0) = x1, f (1) = x2,
f (xn) = xn+2 for all n ∈ N, and f (x) = x otherwise.


