MATH 415

Modern Algebra I

Lecture 4:

Groups and semigroups.
Subgroups.

Groups

Definition. A group is a binary structure $(G, *)$ that satisfies the following axioms:
(G0: closure)
for all elements g and h of $G, g * h$ is an element of G;
(G1: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G2: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of G, such that $e * g=g * e=g$ for all $g \in G$;
(G3: existence of inverse)
for every $g \in G$ there exists an element $h \in G$, called the inverse of g, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or abelian) if it satisfies an additional axiom:
(G4: commutativity) $g * h=h * g$ for all $g, h \in G$.

Addition modulo n

Given a natural number n, let $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$.
A binary operation $+_{n}$ (addition modulo n) on \mathbb{Z}_{n} is defined for any $x, y \in \mathbb{Z}_{n}$ by

$$
x+n y= \begin{cases}x+y & \text { if } x+y<n \\ x+y-n & \text { if } x+y \geq n\end{cases}
$$

Now let n be a positive real number and
$\mathbb{R}_{n}=[0, n)$. The binary operation $+_{n}$ on \mathbb{R}_{n} is defined by the same formula as above.

Theorem Each $\left(\mathbb{Z}_{n},+_{n}\right)$ and each $\left(\mathbb{R}_{n},+_{n}\right)$ is a group. All groups $\left(\mathbb{R}_{n},+_{n}\right)$ are isomorphic.

Transformation groups

Definition. A transformation group is a group where elements are bijective transformations of a fixed set X and the operation is composition.

Examples.

- Symmetric group $S(X)$: all bijective functions $f: X \rightarrow X$.
- Translations of the real line: $T_{c}(x)=x+c, x \in \mathbb{R}$.
- Homeo($\mathbb{R})$: the group of all invertible functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that both f and f^{-1} are continuous (such functions are called homeomorphisms).
- Homeo ${ }^{+}(\mathbb{R})$: the group of all increasing functions in $\operatorname{Homeo}(\mathbb{R})$ (those that preserve orientation of the real line).
- $\operatorname{Diff}(\mathbb{R})$: the group of all invertible functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that both f and f^{-1} are continuously differentiable (such functions are called diffeomorphisms).

Matrix groups

A group is called linear if its elements are $n \times n$ matrices and the group operation is matrix multiplication.

- General linear group $G L(n, \mathbb{R})$ consists of all $n \times n$ matrices that are invertible (i.e., with nonzero determinant). The identity element is $I=\operatorname{diag}(1,1, \ldots, 1)$.
- Special linear group $S L(n, \mathbb{R})$ consists of all $n \times n$ matrices with determinant 1.
Closed under multiplication since $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. Also, $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}$.
- Orthogonal group $O(n, \mathbb{R})$ consists of all orthogonal $n \times n$ matrices $\left(A^{T}=A^{-1}\right)$.
- Special orthogonal group $S O(n, \mathbb{R})$ consists of all orthogonal $n \times n$ matrices with determinant 1 .

$$
S O(n, \mathbb{R})=O(n, \mathbb{R}) \cap S L(n, \mathbb{R})
$$

Semigroups

Definition. A semigroup is a binary structure $(S, *)$ that satisfies the following axioms:
(S0: closure)
for all elements g and h of $S, g * h$ is an element of S;
($\mathrm{S} 1:$ associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in S$.
The semigroup $(S, *)$ is said to be a monoid if it satisfies an additional axiom:
(S2: existence of identity) there exists an element $e \in S$ such that $e * g=g * e=g$ for all $g \in S$.
Optional useful properties of semigroups:
(S3: cancellation) $g * h_{1}=g * h_{2}$ implies $h_{1}=h_{2}$ and $h_{1} * g=h_{2} * g$ implies $h_{1}=h_{2}$ for all $g, h_{1}, h_{2} \in S$.
(S4: commutativity) $g * h=h * g$ for all $g, h \in S$.

Examples of semigroups

- Clearly, any group is also a semigroup and a monoid.
- Real numbers \mathbb{R} with multiplication (commutative monoid).
- Positive integers with addition (commutative semigroup with cancellation).
- Positive integers with multiplication (commutative monoid with cancellation).
- Given a nonempty set X, all functions $f: X \rightarrow X$ with composition (monoid).
- All injective functions $f: X \rightarrow X$ with composition (monoid with left cancellation: $g \circ f_{1}=g \circ f_{2} \Longrightarrow f_{1}=f_{2}$).
- All surjective functions $f: X \rightarrow X$ with composition (monoid with right cancellation: $f_{1} \circ g=f_{2} \circ g \Longrightarrow f_{1}=f_{2}$).

Examples of semigroups

- All $n \times n$ matrices with multiplication (monoid).
- All $n \times n$ matrices with integer entries, with multiplication (monoid).
- Invertible $n \times n$ matrices with integer entries, with multiplication (monoid with cancellation).
- All subsets of a set X with the operation of union (commutative monoid).
- All subsets of a set X with the operation of intersection (commutative monoid).
- Positive integers with the operation $a * b=\max (a, b)$ (commutative monoid).
- Positive integers with the operation $a * b=\min (a, b)$ (commutative semigroup).

Examples of semigroups

- Given a finite alphabet X, the set X^{*} of all finite words (strings) in X with the operation of concatenation.

If $w_{1}=a_{1} a_{2} \ldots a_{n}$ and $w_{2}=b_{1} b_{2} \ldots b_{k}$, then $w_{1} w_{2}=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{k}$. This is a monoid with cancellation. The identity element is the empty word.

Basic properties of groups

- The identity element is unique.
- The inverse element is unique.
- $\left(g^{-1}\right)^{-1}=g$. In other words, $h=g^{-1}$ if and only if $g=h^{-1}$.
- $(g h)^{-1}=h^{-1} g^{-1}$.
- $\left(g_{1} g_{2} \ldots g_{n}\right)^{-1}=g_{n}^{-1} \ldots g_{2}^{-1} g_{1}^{-1}$.
- Cancellation laws: $g h_{1}=g h_{2} \Longrightarrow h_{1}=h_{2}$
and $h_{1} g=h_{2} g \Longrightarrow h_{1}=h_{2}$ for all $g, h_{1}, h_{2} \in G$.
- If $h g=g$ or $g h=g$ for some $g \in G$, then h is the identity element.
- $g h=e \Longleftrightarrow h g=e \Longleftrightarrow h=g^{-1}$.

Equations in groups

Theorem Let G be a group. For any $a, b, c \in G$,

- the equation $a x=b$ has a unique solution $x=a^{-1} b$;
- the equation $y a=b$ has a unique solution $y=b a^{-1}$;
- the equation $a z c=b$ has a unique solution $z=a^{-1} b c^{-1}$.

Powers of an element

Let g be an element of a group G. The positive powers of g are defined inductively:

$$
g^{1}=g \text { and } g^{k+1}=g^{k} g \text { for every integer } k \geq 1
$$

The negative powers of g are defined as the positive powers of its inverse: $g^{-k}=\left(g^{-1}\right)^{k}$ for every positive integer k.
Finally, we set $g^{0}=e$.
Theorem Let g be an element of a group G and $r, s \in \mathbb{Z}$. Then
(i) $g^{r} g^{s}=g^{r+s}$,
(ii) $\left(g^{r}\right)^{s}=g^{r s}$,
(iii) $\left(g^{r}\right)^{-1}=g^{-r}$.

Idea of the proof: First one proves the theorem for positive r, s by induction (induction on s for (i) and (ii), induction on r for (iii)). Then the general case is reduced to the case of positive r, s.

Order of an element

Let g be an element of a group G. We say that g has finite order if $g^{n}=e$ for some positive integer n.
If this is the case, then the smallest positive integer n with this property is called the order of g.
Otherwise g is said to be of infinite order.

Theorem If G is a finite group, then every element of G has finite order.

Proof: Let $g \in G$ and consider the list of powers: g, g^{2}, g^{3}, \ldots Since all elements in this list belong to the finite set G, there must be repetitions within the list. Assume that $g^{r}=g^{s}$ for some $0<r<s$. Then $g^{r} e=g^{r} g^{s-r}$
$\Longrightarrow g^{s-r}=e$ due to the cancellation law.

Subgroups

Definition. A group H is a called a subgroup of a group G if H is a subset of G and the group operation on H is obtained by restricting the group operation on G.

Proposition If H is a subgroup of G then (i) the identity element in H is the same as the identity element in G; (ii) for any $g \in H$ the inverse g^{-1} taken in H is the same as the inverse taken in G.

Theorem Let H be a subset of a group G and define an operation on H by restricting the group operation of G. Then the following are equivalent:
(i) H is a subgroup of G;
(ii) H contains e and is closed under the operation and under taking the inverse, that is, $g, h \in H \Longrightarrow g h \in H$ and $g \in H \Longrightarrow g^{-1} \in H$;
(iii) H is nonempty and $g, h \in H \Longrightarrow g h^{-1} \in H$.

Examples of subgroups: $\quad(\mathbb{Z},+)$ is a subgroup of $(\mathbb{R},+)$.

- ($\mathbb{Q} \backslash\{0\}, \cdot)$ is a subgroup of $(\mathbb{R} \backslash\{0\}, \cdot)$.
- The special linear group $S L(n, \mathbb{R})$ is a subgroup of the general linear group $G L(n, \mathbb{R})$.
- The group of diffeomorphisms $\operatorname{Diff}(\mathbb{R})$ of the real line is a subgroup of the group Homeo(\mathbb{R}) of homeomorphisms.
- Any group G is a subgroup of itself.
- If e is the identity element of a group G, then $\{e\}$ is the trivial subgroup of G.

Counterexamples: - $\left(\mathbb{R}^{+}, \cdot\right)$ is not a subgroup of $(\mathbb{R},+)$ since the operations do not agree (even though the groups are isomorphic).

- $\left(\mathbb{Z}_{n},+_{n}\right)$ is not a subgroup of $(\mathbb{Z},+)$ since the operations do not agree (even though they do agree sometimes).
- $(\mathbb{Z} \backslash\{0\}, \cdot)$ is not a subgroup of $(\mathbb{R} \backslash\{0\}, \cdot)$ since
($\mathbb{Z} \backslash\{0\}, \cdot$) is not a group (it is a subsemigroup).

