MATH 415
Modern Algebra I
Lecture 5:
Generators of a group.
Cyclic groups.
Cayley graphs.

Groups

Definition. A group is a binary structure $(G, *)$ that satisfies the following axioms:
(G0: closure)
for all elements g and h of $G, g * h$ is an element of G;
(G1: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G2: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of G, such that $e * g=g * e=g$ for all $g \in G$;
(G3: existence of inverse)
for every $g \in G$ there exists an element $h \in G$, called the inverse of g, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or abelian) if it satisfies an additional axiom:
(G4: commutativity) $g * h=h * g$ for all $g, h \in G$.

Subgroups

Definition. A group H is a called a subgroup of a group G if H is a subset of G and the group operation on H is obtained by restricting the group operation on G. Notation: $H \leq G$.

Proposition If H is a subgroup of G then (i) the identity element in H is the same as the identity element in G; (ii) for any $g \in H$ the inverse g^{-1} taken in H is the same as the inverse taken in G.

Theorem Let H be a subset of a group G and define an operation on H by restricting the group operation of G. Then the following are equivalent:
(i) H is a subgroup of G;
(ii) H contains e and is closed under the operation and under taking the inverse, that is, $g, h \in H \Longrightarrow g h \in H$ and $g \in H \Longrightarrow g^{-1} \in H$;
(iii) H is nonempty and $g, h \in H \Longrightarrow g h^{-1} \in H$.

Intersection of subgroups

Theorem 1 Let H_{1} and H_{2} be subgroups of a group G. Then the intersection $H_{1} \cap H_{2}$ is also a subgroup of G.

Proof: The identity element e of G belongs to every subgroup. Hence $e \in H_{1} \cap H_{2}$. In particular, the intersection is nonempty. Now for any elements g and h of the group G, $g, h \in H_{1} \cap H_{2} \Longrightarrow g, h \in H_{1}$ and $g, h \in H_{2}$ $\Longrightarrow g h^{-1} \in H_{1}$ and $g h^{-1} \in H_{2} \Longrightarrow g h^{-1} \in H_{1} \cap H_{2}$.

Theorem 2 Let $H_{\alpha}, \alpha \in A$ be a nonempty collection of subgroups of the same group G (where the index set A may be infinite). Then the intersection $\bigcap_{\alpha} H_{\alpha}$ is also a subgroup of G.

Generators of a group

Let S be a set (or a list) of some elements of a group G. The group generated by S, denoted $\langle S\rangle$, is the smallest subgroup of G that contains the set S. The elements of the set S are called generators of the group $\langle S\rangle$.

Theorem 1 The group $\langle S\rangle$ is well defined. Indeed, it is the intersection of all subgroups of G that contain S.

Note that we have at least one subgroup of G containing S, namely, G itself. If it is the only one, i.e., $\langle S\rangle=G$, then S is called a generating set for the group G.

Theorem 2 If S is nonempty, then the group $\langle S\rangle$ consists of all elements of the form $g_{1} g_{2} \ldots g_{k}$, where each g_{i} is either a generator $s \in S$ or the inverse s^{-1} of a generator.

Powers of an element

A cyclic group is a subgroup generated by a single element. The cyclic group $\langle g\rangle$ consists of all powers of the element g (in multiplicative notation).

Let g be an element of a group G. The positive powers of g are defined inductively:

$$
g^{1}=g \text { and } g^{k+1}=g^{k} g \text { for every integer } k \geq 1
$$

The negative powers of g are defined as the positive powers of its inverse: $g^{-k}=\left(g^{-1}\right)^{k}$ for every positive integer k.
Finally, we set $g^{0}=e$.
Theorem Let g be an element of a group G and $r, s \in \mathbb{Z}$.
Then (i) $g^{r} g^{s}=g^{r+s}$,
(ii) $\left(g^{r}\right)^{s}=g^{r s}$,
(iii) $\left(g^{r}\right)^{-1}=g^{-r}$.

Order of an element

Let g be an element of a group G. We say that g has finite order if $g^{n}=e$ for some integer $n>0$.

If this is the case, then the smallest positive integer n with this property is called the order of g.

Otherwise g is said to be of infinite order.

Theorem If G is a finite group, then every element of G has finite order.

Proposition 1 The inverse element g^{-1} has the same order as g.
Proof: $\quad\left(g^{-1}\right)^{n}=g^{-n}=\left(g^{n}\right)^{-1}$ for any integer $n \geq 1$. Since $e^{-1}=e$, it follows that $\left(g^{-1}\right)^{n}=e$ if and only if $g^{n}=e$.

Proposition 2 Let G be a group and $g \in G$ be an element of finite order n. Then $g^{r}=g^{s}$ if and only if r and s have the same remainder under division by n. In particular, $g^{r}=e$ if and only if the order n divides r.

Proposition 3 Let G be a group and $g \in G$ be an element of infinite order. Then $g^{r} \neq g^{s}$ whenever $r \neq s$.

Cyclic groups

A cyclic group is a subgroup generated by a single element.
Cyclic group: $\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}$ (in multiplicative notation) or $\langle g\rangle=\{n g: n \in \mathbb{Z}\}$ (in additive notation).
Any cyclic group is abelian since $g^{n} g^{m}=g^{n+m}=g^{m} g^{n}$ for all $m, n \in \mathbb{Z}$.

If g has finite order n, then the cyclic group $\langle g\rangle$ consists of n elements $g, g^{2}, \ldots, g^{n-1}, g^{n}=e$. If g is of infinite order, then $\langle g\rangle$ is infinite.

Examples of cyclic groups: $\mathbb{Z}, 3 \mathbb{Z}, \mathbb{Z}_{5}, \mathbb{Z}_{8}, S(\{1,2\})$.
Examples of noncyclic groups: any uncountable group, any non-abelian group, \mathbb{Q} with addition, $\mathbb{Q} \backslash\{0\}$ with multiplication.

Subgroups of a cyclic group

Theorem Every subgroup of a cyclic group is cyclic as well.

Proof: Suppose that G is a cyclic group and H is a subgroup of G. Let g be the generator of $G, G=\left\{g^{n}: n \in \mathbb{Z}\right\}$. Denote by k the smallest positive integer such that $g^{k} \in H$ (if there is no such integer then $H=\{e\}$, which is a cyclic group). We are going to show that $H=\left\langle g^{k}\right\rangle$.
Take any $h \in H$. Then $h=g^{n}$ for some $n \in \mathbb{Z}$. We have $n=k q+r$, where q is the quotient and r is the remainder under division of n by $k(0 \leq r<k)$. It follows that $g^{r}=g^{n-k q}=g^{n} g^{-k q}=h\left(g^{k}\right)^{-q} \in H$. By the choice of k, we obtain that $r=0$. Thus $h=g^{n}=g^{k q}=\left(g^{k}\right)^{q} \in\left\langle g^{k}\right\rangle$.

Examples

- Integers \mathbb{Z} with addition.

The group is cyclic, $\mathbb{Z}=\langle 1\rangle=\langle-1\rangle$. The proper cyclic subgroups of \mathbb{Z} are: the trivial subgroup $\{0\}=\langle 0\rangle$ and, for any integer $m \geq 2$, the group $m \mathbb{Z}=\langle m\rangle=\langle-m\rangle$. These are all subgroups of \mathbb{Z}.

- \mathbb{Z}_{5} with addition modulo 5 .

The group is cyclic, $\mathbb{Z}_{5}=\langle 1\rangle=\langle 2\rangle=\langle 3\rangle=\langle 4\rangle$. The only proper subgroup is the trivial subgroup $\{0\}=\langle 0\rangle$.

- \mathbb{Z}_{6} with addition modulo 6 .

The group is cyclic, $\mathbb{Z}_{6}=\langle 1\rangle=\langle 5\rangle$. Proper subgroups are $\{0\}=\langle 0\rangle, \quad\{0,3\}=\langle 3\rangle$ and $\{0,2,4\}=\langle 2\rangle=\langle 4\rangle$.

Greatest common divisor

Given two nonzero integers a and b, the greatest common divisor of a and b is the largest natural number that divides both a and b.

Notation: $\operatorname{gcd}(a, b)$.
Example. $a=12, b=18$.
Natural divisors of 12 are $1,2,3,4,6$, and 12 .
Natural divisors of 18 are 1, 2, 3, 6, 9, and 18 .
Common divisors are $1,2,3$, and 6 .
Thus $\operatorname{gcd}(12,18)=6$.
Notice that $\operatorname{gcd}(12,18)$ is divisible by any other common divisor of 12 and 18 .

Definition. Given nonzero integers $a_{1}, a_{2}, \ldots, a_{k}$, the greatest common divisor $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is the largest positive integer that divides $a_{1}, a_{2}, \ldots, a_{k}$.

Theorem (i) $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is the smallest positive integer represented as $n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{k} a_{k}$, where each $n_{i} \in \mathbb{Z}$ (that is, as an integral linear combination of $\left.a_{1}, a_{2}, \ldots, a_{k}\right)$.
(ii) $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is divisible by any other common divisor of $a_{1}, a_{2}, \ldots, a_{k}$.

Proof. Consider an additive subgroup H of \mathbb{Z} generated by $a_{1}, a_{2}, \ldots, a_{k}$. The subgroup H consists exactly of integral linear combinations of $a_{1}, a_{2}, \ldots, a_{k}$. Note that H is not a trivial subgroup. By the above, $H=m \mathbb{Z}$ for some integer $m \geq 1$. Clearly, m is a common divisor of $a_{1}, a_{2}, \ldots, a_{k}$. Since $m \in H$, it is an integral linear combination of $a_{1}, a_{2}, \ldots, a_{k}$ and hence is divisible by any other common divisor.

Cayley graph

A finitely generated group G can be visualized via the Cayley graph. Suppose a, b, \ldots, c is a finite list of generators for G. The Cayley graph is a directed graph (or digraph) with labeled edges where vertices are elements of G and edges show multiplication by generators. That is, every edge is of the form $g \xrightarrow{s} g s$. Alternatively, one can assign colors to generators and think of the Cayley graph as a graph with colored edges.

The Cayley graph can be used for computations in G. For example, let $h=a^{2} b^{-1} c a^{-1}$. To compute $g h$, we need to find a path of the form (note the directions of edges)

$$
g \xrightarrow{a} g_{1} \xrightarrow{a} g_{2} \stackrel{b}{\longleftrightarrow} g_{3} \xrightarrow{c} g_{4} \stackrel{a}{\longleftarrow} g_{5} .
$$

Such a path exists and is unique. Then $g h=g_{5}$.

