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Lecture 5:

Generators of a group.
Cyclic groups.
Cayley graphs.



Groups

Definition. A group is a binary structure (G , ∗) that satisfies
the following axioms:

(G0: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G1: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G2: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G3: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or abelian) if
it satisfies an additional axiom:

(G4: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Subgroups

Definition. A group H is a called a subgroup of a group G if
H is a subset of G and the group operation on H is obtained
by restricting the group operation on G . Notation: H ≤ G .

Proposition If H is a subgroup of G then (i) the identity
element in H is the same as the identity element in G ;
(ii) for any g ∈ H the inverse g−1 taken in H is the same as
the inverse taken in G .

Theorem Let H be a subset of a group G and define an
operation on H by restricting the group operation of G . Then
the following are equivalent:
(i) H is a subgroup of G ;
(ii) H contains e and is closed under the operation and under
taking the inverse, that is, g , h ∈ H =⇒ gh ∈ H and
g ∈ H =⇒ g−1 ∈ H;
(iii) H is nonempty and g , h ∈ H =⇒ gh−1 ∈ H.



Intersection of subgroups

Theorem 1 Let H1 and H2 be subgroups of a
group G . Then the intersection H1 ∩ H2 is also a

subgroup of G .

Proof: The identity element e of G belongs to every
subgroup. Hence e ∈ H1 ∩ H2. In particular, the intersection
is nonempty. Now for any elements g and h of the group G ,
g , h ∈ H1 ∩ H2 =⇒ g , h ∈ H1 and g , h ∈ H2

=⇒ gh−1 ∈ H1 and gh−1 ∈ H2 =⇒ gh−1 ∈ H1 ∩ H2.

Theorem 2 Let Hα, α ∈ A be a nonempty
collection of subgroups of the same group G

(where the index set A may be infinite). Then
the intersection

⋂
α
Hα is also a subgroup of G .



Generators of a group

Let S be a set (or a list) of some elements of a group G .
The group generated by S , denoted 〈S〉, is the smallest
subgroup of G that contains the set S . The elements of the
set S are called generators of the group 〈S〉.

Theorem 1 The group 〈S〉 is well defined. Indeed, it is the
intersection of all subgroups of G that contain S .

Note that we have at least one subgroup of G containing S ,
namely, G itself. If it is the only one, i.e., 〈S〉 = G , then S is
called a generating set for the group G .

Theorem 2 If S is nonempty, then the group 〈S〉 consists of
all elements of the form g1g2 . . . gk , where each gi is either a
generator s ∈ S or the inverse s−1 of a generator.



Powers of an element

A cyclic group is a subgroup generated by a single element.
The cyclic group 〈g〉 consists of all powers of the element g
(in multiplicative notation).

Let g be an element of a group G . The positive powers of g
are defined inductively:

g 1 = g and g k+1 = g kg for every integer k ≥ 1.

The negative powers of g are defined as the positive powers of
its inverse: g−k = (g−1)k for every positive integer k.
Finally, we set g 0 = e.

Theorem Let g be an element of a group G and r , s ∈ Z.
Then (i) g rg s = g r+s ,
(ii) (g r)s = g rs ,
(iii) (g r)−1 = g−r .



Order of an element

Let g be an element of a group G . We say that g
has finite order if g n = e for some integer n > 0.

If this is the case, then the smallest positive integer

n with this property is called the order of g .

Otherwise g is said to be of infinite order.

Theorem If G is a finite group, then every element
of G has finite order.



Proposition 1 The inverse element g−1 has the same order
as g .

Proof: (g−1)n = g−n = (g n)−1 for any integer n ≥ 1. Since
e−1 = e, it follows that (g−1)n = e if and only if g n = e.

Proposition 2 Let G be a group and g ∈ G be an element
of finite order n. Then g r = g s if and only if r and s have
the same remainder under division by n. In particular, g r = e

if and only if the order n divides r .

Proposition 3 Let G be a group and g ∈ G be an element
of infinite order. Then g r 6= g s whenever r 6= s.



Cyclic groups

A cyclic group is a subgroup generated by a single element.

Cyclic group: 〈g〉 = {g n : n ∈ Z} (in multiplicative notation)
or 〈g〉 = {ng : n ∈ Z} (in additive notation).

Any cyclic group is abelian since g ngm = g n+m = gmg n for
all m, n ∈ Z.

If g has finite order n, then the cyclic group 〈g〉 consists of n
elements g , g 2

, . . . , g n−1
, g n = e.

If g is of infinite order, then 〈g〉 is infinite.

Examples of cyclic groups: Z, 3Z, Z5, Z8, S({1, 2}).

Examples of noncyclic groups: any uncountable group, any
non-abelian group, Q with addition, Q \ {0} with
multiplication.



Subgroups of a cyclic group

Theorem Every subgroup of a cyclic group is
cyclic as well.

Proof: Suppose that G is a cyclic group and H is a subgroup
of G . Let g be the generator of G , G = {g n : n ∈ Z}.
Denote by k the smallest positive integer such that g k ∈ H

(if there is no such integer then H = {e}, which is a cyclic
group). We are going to show that H = 〈g k〉.

Take any h ∈ H. Then h = g n for some n ∈ Z. We have
n = kq + r , where q is the quotient and r is the remainder
under division of n by k (0 ≤ r < k). It follows that
g r = g n−kq = g ng−kq = h(g k)−q ∈ H. By the choice of k,
we obtain that r = 0. Thus h = g n = g kq = (g k)q ∈ 〈g k〉.



Examples

• Integers Z with addition.

The group is cyclic, Z = 〈1〉 = 〈−1〉. The proper cyclic
subgroups of Z are: the trivial subgroup {0} = 〈0〉 and, for
any integer m ≥ 2, the group mZ = 〈m〉 = 〈−m〉. These
are all subgroups of Z.

• Z5 with addition modulo 5.

The group is cyclic, Z5 = 〈1〉 = 〈2〉 = 〈3〉 = 〈4〉. The only
proper subgroup is the trivial subgroup {0} = 〈0〉.

• Z6 with addition modulo 6.

The group is cyclic, Z6 = 〈1〉 = 〈5〉. Proper subgroups are
{0} = 〈0〉, {0, 3} = 〈3〉 and {0, 2, 4} = 〈2〉 = 〈4〉.



Greatest common divisor

Given two nonzero integers a and b, the greatest

common divisor of a and b is the largest natural
number that divides both a and b.

Notation: gcd(a, b).

Example. a = 12, b = 18.
Natural divisors of 12 are 1, 2, 3, 4, 6, and 12.
Natural divisors of 18 are 1, 2, 3, 6, 9, and 18.
Common divisors are 1, 2, 3, and 6.
Thus gcd(12, 18) = 6.

Notice that gcd(12, 18) is divisible by any other
common divisor of 12 and 18.



Definition. Given nonzero integers a1, a2, . . . , ak , the
greatest common divisor gcd(a1, a2, . . . , ak) is the largest
positive integer that divides a1, a2, . . . , ak .

Theorem (i) gcd(a1, a2, . . . , ak) is the smallest positive
integer represented as n1a1 + n2a2 + · · ·+ nkak , where each
ni ∈ Z (that is, as an integral linear combination of
a1, a2, . . . , ak).
(ii) gcd(a1, a2, . . . , ak) is divisible by any other common

divisor of a1, a2, . . . , ak .

Proof. Consider an additive subgroup H of Z generated by
a1, a2, . . . , ak . The subgroup H consists exactly of integral
linear combinations of a1, a2, . . . , ak . Note that H is not a
trivial subgroup. By the above, H = mZ for some integer
m ≥ 1. Clearly, m is a common divisor of a1, a2, . . . , ak .
Since m ∈ H, it is an integral linear combination of
a1, a2, . . . , ak and hence is divisible by any other common
divisor.



Cayley graph

A finitely generated group G can be visualized via the Cayley
graph. Suppose a, b, . . . , c is a finite list of generators for
G . The Cayley graph is a directed graph (or digraph) with
labeled edges where vertices are elements of G and edges show
multiplication by generators. That is, every edge is of the form
g

s
−→ gs. Alternatively, one can assign colors to generators

and think of the Cayley graph as a graph with colored edges.

The Cayley graph can be used for computations in G . For
example, let h = a2b−1ca−1. To compute gh, we need to find
a path of the form (note the directions of edges)

g
a
−→ g1

a
−→ g2

b
←− g3

c
−→ g4

a
←− g5.

Such a path exists and is unique. Then gh = g5.


