MATH 415
Modern Algebra I

Lecture 7:
 Order and sign of a permutation.

Order of a permutation

The order of a permutation $\pi \in S_{n}$, denoted $o(\pi)$, is defined as the smallest positive integer m such that $\pi^{m}=\mathrm{id}$, the identity map. In other words, this is the order of π as an element of the symmetric group S_{n}.
(Recall that every element of a finite group has finite order.)
Theorem Let π be a permutation of order m. Then $\pi^{r}=\pi^{s}$ if and only if $r \equiv s \bmod m$. In particular, $\pi^{r}=\mathrm{id}$ if and only if the order m divides r.

Remark. Notation $r \equiv s$ mod m (r is congruent to s modulo m) means that r and s leave the same remainder under division by m.

Theorem Let π be a cyclic permutation. Then the order $o(\pi)$ is the length of the cycle π.

Examples. • $\pi=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right.$ 5).
$\pi^{2}=\left(\begin{array}{llll}1 & 3 & 5 & 2\end{array}\right), \pi^{3}=\left(\begin{array}{ll}1 & 4\end{array} 253\right)$,
$\pi^{4}=\left(\begin{array}{lll}1 & 5 & 4 \\ 2\end{array}\right), \pi^{5}=\mathrm{id}$.
$\Longrightarrow o(\pi)=5$.

- $\sigma=\left(\begin{array}{ll}1 & 2 \\ 3\end{array} 45\right.$ 6).
$\sigma^{2}=\left(\begin{array}{ll}1 & 3\end{array}\right)(246), \sigma^{3}=(14)(25)(36)$,
$\sigma^{4}=(153)(264), \sigma^{5}=(165432), \sigma^{6}=\mathrm{id}$.
$\Longrightarrow o(\sigma)=6$.
- $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)$.
$\tau^{2}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right), \tau^{3}=\left(\begin{array}{ll}4 & 5\end{array}\right), \tau^{4}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$,
$\tau^{5}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)(45), \tau^{6}=\mathrm{id}$.
$\Longrightarrow o(\tau)=6$.

Lemma 1 Let π and σ be two commuting permutations: $\pi \sigma=\sigma \pi$. Then
(i) the powers π^{r} and σ^{s} commute for all $r, s \in \mathbb{Z}$,
(ii) $(\pi \sigma)^{r}=\pi^{r} \sigma^{r}$ for all $r \in \mathbb{Z}$.

Lemma 2 Let π and σ be disjoint permutations in S_{n}. Then (i) the powers π^{r} and σ^{s} are also disjoint,
(ii) $\pi^{r} \sigma^{s}=\mathrm{id}$ implies $\pi^{r}=\sigma^{s}=\mathrm{id}$.

Lemma 3 Let π and σ be disjoint permutations in S_{n}. Then
(i) they commute: $\pi \sigma=\sigma \pi$,
(ii) $(\pi \sigma)^{r}=\mathrm{id}$ if and only if $\pi^{r}=\sigma^{r}=\mathrm{id}$,
(iii) $o(\pi \sigma)=\operatorname{Icm}(o(\pi), o(\sigma))$.

Theorem Let $\pi \in S_{n}$ and suppose that $\pi=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ is a decomposition of π as a product of disjoint cycles. Then the order of π is the least common multiple of the lengths of cycles $\sigma_{1}, \ldots, \sigma_{k}$.

Sign of a permutation

Theorem 1 (i) Any permutation is a product of transpositions.
(ii) If $\pi=\tau_{1} \tau_{2} \ldots \tau_{n}=\tau_{1}^{\prime} \tau_{2}^{\prime} \ldots \tau_{m}^{\prime}$, where $\tau_{i}, \tau_{j}^{\prime}$ are transpositions, then the numbers n and m are of the same parity (that is, both even or both odd).

A permutation π is called even if it is a product of an even number of transpositions, and odd if it is a product of an odd number of transpositions.
The $\boldsymbol{\operatorname { s i g n }} \operatorname{sgn}(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi \sigma)=\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S_{n}$.
(ii) $\operatorname{sgn}\left(\pi^{-1}\right)=\operatorname{sgn}(\pi)$ for any $\pi \in S_{n}$.
(iii) $\operatorname{sgn}(\mathrm{id})=1$.
(iv) $\operatorname{sgn}(\tau)=-1$ for any transposition τ.
(v) $\operatorname{sgn}(\sigma)=(-1)^{r-1}$ for any cycle σ of length r.

Let $\pi \in S_{n}$ and i, j be integers, $1 \leq i<j \leq n$. We say that the permutation π preserves order of the pair (i, j) if $\pi(i)<\pi(j)$. Otherwise π makes an inversion. Denote by $N(\pi)$ the number of inversions made by the permutation π.

Lemma 1 Let $\tau, \pi \in S_{n}$ and suppose that τ is an adjacent transposition, $\tau=(k k+1)$. Then $|N(\tau \pi)-N(\pi)|=1$.
Proof: For every pair $(i, j), 1 \leq i<j \leq n$, let us compare the order of pairs $\pi(i), \pi(j)$ and $\tau \pi(i), \tau \pi(j)$. We observe that the order differs exactly for one pair, when $\{\pi(i), \pi(j)\}=\{k, k+1\}$. The lemma follows.
Lemma 2 Let $\pi \in S_{n}$ and $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ be adjacent transpositions. Then (i) for any $\pi \in S_{n}$ the numbers k and $N\left(\tau_{1} \tau_{2} \ldots \tau_{k} \pi\right)-N(\pi)$ are of the same parity,
(ii) the numbers k and $N\left(\tau_{1} \tau_{2} \ldots \tau_{k}\right)$ are of the same parity.

Sketch of the proof: (i) follows from Lemma 1 by induction on k. (ii) is a particular case of part (i), when $\pi=\mathrm{id}$.

Lemma 3 (i) Any cycle of length r is a product of $r-1$ transpositions. (ii) Any transposition is a product of an odd number of adjacent transpositions.

$$
\text { Proof: (i) }\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{r}
\end{array}\right)=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ll}
x_{3} & x_{4}
\end{array}\right) \ldots\left(x_{r-1} x_{r}\right) .
$$

(ii) $(k k+r)=\sigma^{-1}(k k+1) \sigma$, where $\sigma=(k+1 k+2 \ldots k+r)$.

By the above, $\sigma=(k+1 k+2)(k+2 k+3) \ldots(k+r-1 k+r)$ and $\sigma^{-1}=(k+r k+r-1) \ldots(k+3 k+2)(k+2 k+1)$.

Theorem (i) Any permutation is a product of transpositions. (ii) If $\pi=\tau_{1} \tau_{2} \ldots \tau_{k}$, where τ_{i} are transpositions, then the numbers k and $N(\pi)$ are of the same parity.
Proof: (i) Any permutation is a product of disjoint cycles. By Lemma 3, any cycle is a product of transpositions.
(ii) By Lemma 3, each of $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ is a product of an odd number of adjacent transpositions. Hence $\pi=\tau_{1}^{\prime} \tau_{2}^{\prime} \ldots \tau_{m}^{\prime}$, where τ_{i}^{\prime} are adjacent transpositions and number m is of the same parity as k. By Lemma $2, m$ has the same parity as $N(\pi)$.

Examples

- $\pi=\left(\begin{array}{cccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8\end{array}\right)$.

First we decompose π into a product of disjoint cycles:

$$
\pi=(124937 \text { 5)(6 } 128 \text { 11). }
$$

The cycle $\sigma_{1}=(1249375)$ has length 7 , hence it is an even permutation. The cycle $\sigma_{2}=\left(\begin{array}{ll}612811)\end{array}\right.$ has length 4, hence it is an odd permutation. Then

$$
\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\sigma_{1} \sigma_{2}\right)=\operatorname{sgn}\left(\sigma_{1}\right) \operatorname{sgn}\left(\sigma_{2}\right)=1 \cdot(-1)=-1
$$

- $\pi=\left(\begin{array}{ll}2 & 4\end{array}\right)(12)(234)$.
π is represented as a product of cycles. The transposition has sign -1 while the cycles of length 3 have sign +1 . Even though the cycles are not disjoint, $\operatorname{sgn}(\pi)=1 \cdot(-1) \cdot 1=-1$.

Theorem The symmetric group S_{n} is generated by two permutations: $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\pi=\left(\begin{array}{lll}1 & 2 & 3\end{array} \ldots n\right)$.

Proof: Let $H=\langle\tau, \pi\rangle$. We have to show that $H=S_{n}$.
First we obtain that $\alpha=\tau \pi=(23 \ldots n)$. Then we observe that $\sigma(12) \sigma^{-1}=(\sigma(1) \sigma(2))$ for any permutation σ. In particular, $(1 k)=\alpha^{k-2}(12)\left(\alpha^{k-2}\right)^{-1}$ for $k=2,3 \ldots, n$. It follows that the subgroup H contains all transpositions of the form (1 k).
Further, for any integers $2 \leq k<m \leq n$ we have $(k m)=(1 k)(1 m)(1 k)$. Therefore the subgroup H contains all transpositions. Finally, every permutation in S_{n} is a product of transpositions, therefore it is contained in H.
Thus $H=S_{n}$.
Remark. Although the group S_{n} is generated by two elements, its subgroups need not be generated by two elements.

Alternating groups

Given an integer $n \geq 2$, the alternating group on n symbols, denoted A_{n} or $A(n)$, is the set of all even permutations in the symmetric group S_{n}.

Theorem The alternating group A_{n} is a subgroup of the symmetric group S_{n}.

In other words, the product of even permutations is even, the identity function is an even permutation, and the inverse of an even permutation is even.

Theorem The alternating group A_{n} has $n!/ 2$ elements.

Proof: Consider the function $F: A_{n} \rightarrow S_{n} \backslash A_{n}$ given by $F(\pi)=(12) \pi$. One can observe that F is bijective. Hence the sets A_{n} and $S_{n} \backslash A_{n}$ have the same number of elements.

Examples. - The alternating group A_{3} has 3 elements: the identity function and two cycles of length 3, (1 2 3) and (1 32).

- The alternating group A_{4} has 12 elements of the following cycle shapes: id, (1 23), and (1 2)(3 4).
- The alternating group A_{5} has 60 elements of the following cycle shapes: id, (1 2 3), (1 2)(34), and (12345).

