MATH 415 Modern Algebra I

Lecture 7: Order and sign of a permutation.

Order of a permutation

The **order** of a permutation $\pi \in S_n$, denoted $o(\pi)$, is defined as the smallest positive integer *m* such that $\pi^m = \mathrm{id}$, the identity map. In other words, this is the order of π as an element of the symmetric group S_n .

(Recall that every element of a finite group has finite order.)

Theorem Let π be a permutation of order m. Then $\pi^r = \pi^s$ if and only if $r \equiv s \mod m$. In particular, $\pi^r = \text{id}$ if and only if the order m divides r.

Remark. Notation $r \equiv s \mod m$ (*r* is congruent to *s* modulo *m*) means that *r* and *s* leave the same remainder under division by *m*.

Theorem Let π be a cyclic permutation. Then the order $o(\pi)$ is the length of the cycle π .

Examples. •
$$\pi = (1 \ 2 \ 3 \ 4 \ 5).$$

 $\pi^2 = (1 \ 3 \ 5 \ 2 \ 4), \ \pi^3 = (1 \ 4 \ 2 \ 5 \ 3),$
 $\pi^4 = (1 \ 5 \ 4 \ 3 \ 2), \ \pi^5 = \text{id.}$
 $\implies o(\pi) = 5.$

•
$$\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6).$$

 $\sigma^2 = (1 \ 3 \ 5)(2 \ 4 \ 6), \ \sigma^3 = (1 \ 4)(2 \ 5)(3 \ 6),$
 $\sigma^4 = (1 \ 5 \ 3)(2 \ 6 \ 4), \ \sigma^5 = (1 \ 6 \ 5 \ 4 \ 3 \ 2), \ \sigma^6 = \mathrm{id}.$
 $\implies o(\sigma) = 6.$

•
$$\tau = (1 \ 2 \ 3)(4 \ 5).$$

 $\tau^2 = (1 \ 3 \ 2), \ \tau^3 = (4 \ 5), \ \tau^4 = (1 \ 2 \ 3),$
 $\tau^5 = (1 \ 3 \ 2)(4 \ 5), \ \tau^6 = \mathrm{id}.$
 $\implies o(\tau) = 6.$

Lemma 1 Let π and σ be two commuting permutations: $\pi\sigma = \sigma\pi$. Then (i) the powers π^r and σ^s commute for all $r, s \in \mathbb{Z}$, (ii) $(\pi\sigma)^r = \pi^r \sigma^r$ for all $r \in \mathbb{Z}$.

Lemma 2 Let π and σ be disjoint permutations in S_n . Then (i) the powers π^r and σ^s are also disjoint, (ii) $\pi^r \sigma^s = \text{id}$ implies $\pi^r = \sigma^s = \text{id}$.

Lemma 3 Let π and σ be disjoint permutations in S_n . Then (i) they commute: $\pi \sigma = \sigma \pi$, (ii) $(\pi \sigma)^r = \text{id}$ if and only if $\pi^r = \sigma^r = \text{id}$, (iii) $o(\pi \sigma) = lcm(o(\pi), o(\sigma))$.

Theorem Let $\pi \in S_n$ and suppose that $\pi = \sigma_1 \sigma_2 \dots \sigma_k$ is a decomposition of π as a product of disjoint cycles. Then the order of π is the least common multiple of the lengths of cycles $\sigma_1, \dots, \sigma_k$.

Sign of a permutation

Theorem 1 (i) Any permutation is a product of transpositions. (ii) If $\pi = \tau_1 \tau_2 \dots \tau_n = \tau'_1 \tau'_2 \dots \tau'_m$, where τ_i, τ'_j are transpositions, then the numbers *n* and *m* are of the same parity (that is, both even or both odd).

A permutation π is called **even** if it is a product of an even number of transpositions, and **odd** if it is a product of an odd number of transpositions.

The sign $sgn(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi\sigma) = \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S_n$. **(ii)** $\operatorname{sgn}(\pi^{-1}) = \operatorname{sgn}(\pi)$ for any $\pi \in S_n$. **(iii)** $\operatorname{sgn}(\operatorname{id}) = 1$. **(iv)** $\operatorname{sgn}(\tau) = -1$ for any transposition τ . **(v)** $\operatorname{sgn}(\sigma) = (-1)^{r-1}$ for any cycle σ of length r. Let $\pi \in S_n$ and i, j be integers, $1 \le i < j \le n$. We say that the permutation π preserves order of the pair (i, j) if $\pi(i) < \pi(j)$. Otherwise π makes an **inversion**. Denote by $N(\pi)$ the number of inversions made by the permutation π .

Lemma 1 Let $\tau, \pi \in S_n$ and suppose that τ is an adjacent transposition, $\tau = (k \ k+1)$. Then $|N(\tau\pi) - N(\pi)| = 1$.

Proof: For every pair (i, j), $1 \le i < j \le n$, let us compare the order of pairs $\pi(i), \pi(j)$ and $\tau\pi(i), \tau\pi(j)$. We observe that the order differs exactly for one pair, when $\{\pi(i), \pi(j)\} = \{k, k+1\}$. The lemma follows.

Lemma 2 Let $\pi \in S_n$ and $\tau_1, \tau_2, \ldots, \tau_k$ be adjacent transpositions. Then (i) for any $\pi \in S_n$ the numbers k and $N(\tau_1\tau_2\ldots\tau_k\pi) - N(\pi)$ are of the same parity, (ii) the numbers k and $N(\tau_1\tau_2\ldots\tau_k)$ are of the same parity. Sketch of the proof: (i) follows from Lemma 1 by induction on k. (ii) is a particular case of part (i), when $\pi = \text{id.}$

Lemma 3 (i) Any cycle of length r is a product of r-1 transpositions. **(ii)** Any transposition is a product of an odd number of adjacent transpositions.

Proof: (i) $(x_1 x_2 \dots x_r) = (x_1 x_2)(x_2 x_3)(x_3 x_4) \dots (x_{r-1} x_r).$ (ii) $(k \ k+r) = \sigma^{-1}(k \ k+1)\sigma$, where $\sigma = (k+1 \ k+2 \dots \ k+r).$ By the above, $\sigma = (k+1 \ k+2)(k+2 \ k+3) \dots (k+r-1 \ k+r)$ and $\sigma^{-1} = (k+r \ k+r-1) \dots (k+3 \ k+2)(k+2 \ k+1).$

Theorem (i) Any permutation is a product of transpositions. (ii) If $\pi = \tau_1 \tau_2 \dots \tau_k$, where τ_i are transpositions, then the numbers k and $N(\pi)$ are of the same parity.

Proof: (i) Any permutation is a product of disjoint cycles. By Lemma 3, any cycle is a product of transpositions.

(ii) By Lemma 3, each of $\tau_1, \tau_2, \ldots, \tau_k$ is a product of an odd number of adjacent transpositions. Hence $\pi = \tau'_1 \tau'_2 \ldots \tau'_m$, where τ'_i are adjacent transpositions and number *m* is of the same parity as *k*. By Lemma 2, *m* has the same parity as $N(\pi)$.

Examples

•
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$$
.

First we decompose π into a product of disjoint cycles:

 $\pi = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11).$

The cycle $\sigma_1 = (1\ 2\ 4\ 9\ 3\ 7\ 5)$ has length 7, hence it is an even permutation. The cycle $\sigma_2 = (6\ 12\ 8\ 11)$ has length 4, hence it is an odd permutation. Then

$$\operatorname{sgn}(\pi) = \operatorname{sgn}(\sigma_1 \sigma_2) = \operatorname{sgn}(\sigma_1) \operatorname{sgn}(\sigma_2) = 1 \cdot (-1) = -1.$$

•
$$\pi = (2 \ 4 \ 3)(1 \ 2)(2 \ 3 \ 4).$$

 π is represented as a product of cycles. The transposition has sign -1 while the cycles of length 3 have sign +1. Even though the cycles are not disjoint, $sgn(\pi) = 1 \cdot (-1) \cdot 1 = -1$.

Theorem The symmetric group S_n is generated by two permutations: $\tau = (1 \ 2)$ and $\pi = (1 \ 2 \ 3 \ \dots \ n)$.

Proof: Let $H = \langle \tau, \pi \rangle$. We have to show that $H = S_n$. First we obtain that $\alpha = \tau \pi = (2 \ 3 \dots n)$. Then we observe that $\sigma(1 \ 2)\sigma^{-1} = (\sigma(1) \ \sigma(2))$ for any permutation σ . In particular, $(1 \ k) = \alpha^{k-2}(1 \ 2)(\alpha^{k-2})^{-1}$ for $k = 2, 3 \dots, n$. It follows that the subgroup H contains all transpositions of the form $(1 \ k)$.

Further, for any integers $2 \le k < m \le n$ we have $(k \ m) = (1 \ k)(1 \ m)(1 \ k)$. Therefore the subgroup H contains all transpositions. Finally, every permutation in S_n is a product of transpositions, therefore it is contained in H. Thus $H = S_n$.

Remark. Although the group S_n is generated by two elements, its subgroups need not be generated by two elements.

Alternating groups

Given an integer $n \ge 2$, the **alternating group** on *n* symbols, denoted A_n or A(n), is the set of all even permutations in the symmetric group S_n .

Theorem The alternating group A_n is a subgroup of the symmetric group S_n .

In other words, the product of even permutations is even, the identity function is an even permutation, and the inverse of an even permutation is even.

Theorem The alternating group A_n has n!/2 elements.

Proof: Consider the function $F : A_n \to S_n \setminus A_n$ given by $F(\pi) = (1 \ 2)\pi$. One can observe that F is bijective. Hence the sets A_n and $S_n \setminus A_n$ have the same number of elements.

Examples. • The alternating group A_3 has 3 elements: the identity function and two cycles of length 3, (1 2 3) and (1 3 2).

- The alternating group A_4 has 12 elements of the following **cycle shapes**: id, (1 2 3), and (1 2)(3 4).
- The alternating group A_5 has 60 elements of the following cycle shapes: id, $(1 \ 2 \ 3)$, $(1 \ 2)(3 \ 4)$, and $(1 \ 2 \ 3 \ 4 \ 5)$.