MATH 415

Modern Algebra I
Lecture 9:
Direct product of groups. Factor groups.

Direct product of groups

Given nonempty sets G and H, the Cartesian product $G \times H$ is the set of all ordered pairs (g, h) such that $g \in G$ and $h \in H$. Suppose $*$ is a binary operation on G and \star is a binary operation on H. Then we can define a binary operation

- on $G \times H$ by

$$
\left(g_{1}, h_{1}\right) \bullet\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} \star h_{2}\right)
$$

Proposition 1 The operation • is fully (resp. uniquely, well) defined if and only if both $*$ and \star are.
Proposition 2 The operation \bullet is associative if and only if both $*$ and \star are associative.
Proposition 3 A pair $\left(e_{G}, e_{H}\right)$ is the identity element in $G \times H$ if and only if e_{G} is the identity element in G and e_{H} is the identity element in H.
Proposition $4\left(g^{\prime}, h^{\prime}\right)=(g, h)^{-1}$ in $G \times H$ if and only if $g^{\prime}=g^{-1}$ in G and $h^{\prime}=h^{-1}$ in H.

Direct product of groups

Given nonempty sets G and H, the Cartesian product $G \times H$ is the set of all ordered pairs (g, h) such that $g \in G$ and $h \in H$. Suppose $*$ is a binary operation on G and \star is a binary operation on H. Then we can define a binary operation

- on $G \times H$ by

$$
\left(g_{1}, h_{1}\right) \bullet\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} \star h_{2}\right) .
$$

Theorem The set $G \times H$ with the operation \bullet is a group if and only if both $(G, *)$ and (H, \star) are groups.
The group $G \times H$ is called the direct product of the groups G and H. Usually the same notation (multiplicative or additive) is used for all three groups:

$$
\begin{aligned}
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) & =\left(g_{1} g_{2}, h_{1} h_{2}\right) \text { or } \\
\left(g_{1}, h_{1}\right)+\left(g_{2}, h_{2}\right) & =\left(g_{1}+g_{2}, h_{1}+h_{2}\right) .
\end{aligned}
$$

Similarly, we can define the direct product $G_{1} \times G_{2} \times \cdots \times G_{n}$ of any finite collection of groups $G_{1}, G_{2}, \ldots, G_{n}$.

Example. $\mathbb{Z}_{2} \times \mathbb{Z}_{3}\left(\right.$ with $+_{2}$ in \mathbb{Z}_{2} and $+_{3}$ in $\left.\mathbb{Z}_{3}\right)$.
The group consists of 6 elements. It is abelian since \mathbb{Z}_{2} and \mathbb{Z}_{3} are both abelian. The identity element is $(0,0)$.
Let $g=(1,1)$. Then $2 g=g+g=(0,2), 3 g=(1,0)$, $4 g=(0,1), 5 g=(1,2)$, and $6 g=(0,0)$. It follows that $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ is a cyclic group, $\mathbb{Z}_{2} \times \mathbb{Z}_{3}=\langle g\rangle$.

Theorem If g has finite order in a group G and h has finite order in a group H, then (g, h) has finite order in $G \times H$ equal to $\operatorname{lcm}(o(g), o(h))$.

Theorem The direct product of nontrivial cyclic groups is cyclic if and only if they are all finite and their orders are pairwise coprime.
For example, groups $\mathbb{Z}_{3} \times \mathbb{Z}_{5}, \mathbb{Z}_{4} \times \mathbb{Z}_{15}$, and $\mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7}$ are cyclic while groups $\mathbb{Z}_{4} \times \mathbb{Z}_{6}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}$, and $\mathbb{Z} \times \mathbb{Z}$ are not.

Factor space

Let X be a nonempty set and \sim be an equivalence relation on X. Given an element $x \in X$, the equivalence class of x, denoted $[x]_{\sim}$ or simply $[x]$, is the set of all elements of X that are equivalent (i.e., related by \sim) to x :

$$
[x]_{\sim}=\{y \in X \mid y \sim x\} .
$$

Theorem Equivalence classes of the relation \sim form a partition of the set X.

The set of all equivalence classes of \sim is denoted X / \sim and called the factor space (or quotient space) of X by the relation \sim.

In the case when the set X carries some structure (algebraic, geometric, analytic, etc.), this structure may (or may not) induce an analogous structure on the factor space X / \sim.

Examples of factor spaces

- $X=G$, a group; $x \sim y$ if and only if $x \in y H$, where H is a fixed subgroup.
Equivalence class of an element $g \in G$ is a left coset of the subgroup $H,[g]_{\sim}=g H$. The factor space G / \sim is the set of all left cosets of H in G. It is usually denoted G / H.
- $X=G$, a group; $x \sim y$ if and only if $x \in H y$, where H is a fixed subgroup.
Equivalence class of an element $g \in G$ is a right coset of the subgroup $H,[g]_{\sim}=H g$. The factor space G / \sim is the set of all right cosets of H in G. It is often denoted $H \backslash G$.
- $X=G$, a group; $x \sim y$ if and only if $x \in K y H=\{k y h$: $h \in H, k \in K\}$, where H and K are fixed subgroups. In this example, $[g]_{\sim}=K g H$ (a double coset). The factor space G / \sim is usually denoted $K \backslash G / H$.

Factor group

Let G be a nonempty set with a binary operation *. Given an equivalence relation \sim on G, we say that the relation \sim is compatible with the operation $*$ if for any $g_{1}, g_{2}, h_{1}, h_{2} \in G$,

$$
g_{1} \sim g_{2} \text { and } h_{1} \sim h_{2} \Longrightarrow g_{1} * h_{1} \sim g_{2} * h_{2} .
$$

If this is the case, we can define an operation on the factor space G / \sim by $[g] \star[h]=[g * h]$ for all $g, h \in G$. Compatibility is required so that the operation \star is defined uniquely: if $\left[g^{\prime}\right]=[g]$ and $\left[h^{\prime}\right]=[h]$ then $\left[g^{\prime} * h^{\prime}\right]=[g * h]$. If the operation $*$ is associative (resp. commutative), then so is \star. If e is the identity element for $*$, then its equivalence class $[e]$ is the identity element for $*$. If $h=g^{-1}$ in $(G, *)$, then $[h]=[g]^{-1}$ in $(G / \sim, \star)$.
Thus, if $(G, *)$ is a group then $(G / \sim, *)$ is also a group called the factor group (or quotient group). Moreover, if the group $(G, *)$ is abelian then so is $(G / \sim, \star)$.

Question. When is an equivalence relation \sim on a group G compatible with the operation?

Let G be a group and assume that an equivalence relation \sim on G is compatible with the operation (so that the factor space G / \sim is also the factor group). For simplicity, let us use multiplicative notation.

Lemma 1 The equivalence class of the identity element is a subgroup of G.
Proof. Let $H=[e]_{\sim}$ be the equivalence class of the identity element e. We need to show that (i) $e \in H$, (ii) $h_{1}, h_{2} \in H$ $\Longrightarrow h_{1} h_{2} \in H$, and (iii) $h \in H \Longrightarrow h^{-1} \in H$.
By reflexivity, $e \sim e$. Hence $e \in H$. Futher, if $h_{1}, h_{2} \in H$, then $h_{1} \sim e$ and $h_{2} \sim e$. By compatibility, $h_{1} h_{2} \sim e e=e$ so that $h_{1} h_{2} \in H$. Next, if $h \in H$ then $h \sim e$. Also, $h^{-1} \sim h^{-1}$. By compatibility, $h h^{-1} \sim e h^{-1}$, that is, $e \sim h^{-1}$. By symmetry, $h^{-1} \sim e$ so that $h^{-1} \in H$.

Lemma 2 Each equivalence class is a left coset of the subgroup $H=[e]_{\sim}$.
Proof. We need to prove that $[g]_{\sim}=g H$ for all $g \in G$. We are going to show that $g H \subset[g]_{\sim}$ and $[g]_{\sim} \subset g H$.
Suppose $a \in g H$, that is, $a=g h$ for some $h \in H$. Then $g \sim g$ and $h \sim e$, which implies that $g h \sim g e=g$. Hence $a \in[g]_{\sim}$. Conversely, suppose $a \in[g]_{\sim}$. We have $a=e a=\left(g g^{-1}\right) a=g\left(g^{-1} a\right)$. Since $g^{-1} \sim g^{-1}$ and $a \sim g$, it follows that $g^{-1} a \sim g^{-1} g=e$. Hence $g^{-1} a \in H$ so that $a=g\left(g^{-1} a\right) \in g H$.

Lemma 3 Each equivalence class is a right coset of the subgroup $H=[e]_{\sim}$.
Proof. Analogous to the proof of Lemma 2.
Definition. A subgroup H of a group G is called normal if $g H=H g$ for all $g \in G$, that is, each left coset of H is also a right coset. Notation: $H \triangleleft G$ or $H \unlhd G$.

Factor group

Question. When is an equivalence relation \sim on a group G compatible with the operation?

Theorem Assume that the factor space G / \sim is also a factor group. Then
(i) $H=[e]_{\sim}$, the equivalence class of the identity element, is a subgroup of G,
(ii) $[g]_{\sim}=g H$ for all $g \in G$,
(iii) $G / \sim=G / H$,
(iv) the subgroup H is normal, which means that $g H=H g$ for all $g \in G$.

Theorem If H is a normal subgroup of a group G, then G / H is a factor group.

Alternative construction of the factor group

Suppose G is a group (with multiplicative notation). For any $X, Y \subset G$ let $X Y=\{x y \mid x \in X, y \in Y\}$. This "multiplication of sets" is a well-defined operation on $\mathcal{P}(G)$, the set of all subsets of G. The operation is associative: $(X Y) Z=X(Y Z)$ for any sets $X, Y, Z \subset G$. Indeed,

$$
\begin{aligned}
& (X Y) Z=\{(x y) z \mid x \in X, y \in Y, z \in Z\} \\
& X(Y Z)=\{x(y z) \mid x \in X, y \in Y, z \in Z\}
\end{aligned}
$$

Proposition If H is a normal subgroup of G, then for all $a, b \in G$ we have $(a H)(b H)=(a b) H$ in the sense of the above definition.

Alternative construction of the factor group

Suppose G is a group (with multiplicative notation). For any sets $X, Y \subset G$ let $X Y=\{x y \mid x \in X, y \in Y\}$.

Proposition If H is a normal subgroup of G, then for all $a, b \in G$ we have $(a H)(b H)=(a b) H$ in the sense of the above definition.

Proof. In terms of multiplication of sets, any coset gH can be written as $\{g\} H$. Therefore $(a H)(b H)=(\{a\} H)(\{b\} H)$. By associativity, this is the same as $\{a\}(H\{b\}) H$. Now $H\{b\}$ is the right coset $H b$. Since the subgroup H is normal, we have $H b=b H=\{b\} H$. Again by associativity,

$$
(a H)(b H)=\{a\}(\{b\} H) H=(\{a\}\{b\})(H H) .
$$

Clearly, $\{a\}\{b\}=\{a b\}$. It remains to show that $H H=H$. Indeed, $H H \subset H$ since the subgroup H is closed under the operation. Conversely, $H=\{e\} H \subset H H$.

