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Modern Algebra I

Lecture 9:
Direct product of groups.

Factor groups.



Direct product of groups

Given nonempty sets G and H, the Cartesian product G × H

is the set of all ordered pairs (g , h) such that g ∈ G and
h ∈ H. Suppose ∗ is a binary operation on G and ⋆ is a
binary operation on H. Then we can define a binary operation
• on G × H by

(g1, h1) • (g2, h2) = (g1 ∗ g2, h1 ⋆ h2).

Proposition 1 The operation • is fully (resp. uniquely, well)
defined if and only if both ∗ and ⋆ are.

Proposition 2 The operation • is associative if and only if
both ∗ and ⋆ are associative.

Proposition 3 A pair (eG , eH) is the identity element in
G × H if and only if eG is the identity element in G and eH is
the identity element in H.

Proposition 4 (g ′, h′) = (g , h)−1 in G × H if and only if
g ′ = g−1 in G and h′ = h−1 in H.



Direct product of groups

Given nonempty sets G and H, the Cartesian product G × H

is the set of all ordered pairs (g , h) such that g ∈ G and
h ∈ H. Suppose ∗ is a binary operation on G and ⋆ is a
binary operation on H. Then we can define a binary operation
• on G × H by

(g1, h1) • (g2, h2) = (g1 ∗ g2, h1 ⋆ h2).

Theorem The set G × H with the operation • is a group if
and only if both (G , ∗) and (H, ⋆) are groups.

The group G × H is called the direct product of the groups
G and H. Usually the same notation (multiplicative or
additive) is used for all three groups:

(g1, h1)(g2, h2) = (g1g2, h1h2) or
(g1, h1) + (g2, h2) = (g1 + g2, h1 + h2).

Similarly, we can define the direct product G1 × G2 × · · · × Gn

of any finite collection of groups G1,G2, . . . ,Gn.



Example. Z2 × Z3 (with +2 in Z2 and +3 in Z3).

The group consists of 6 elements. It is abelian since Z2 and
Z3 are both abelian. The identity element is (0, 0).
Let g = (1, 1). Then 2g = g + g = (0, 2), 3g = (1, 0),
4g = (0, 1), 5g = (1, 2), and 6g = (0, 0). It follows that
Z2 × Z3 is a cyclic group, Z2 × Z3 = 〈g〉.

Theorem If g has finite order in a group G and h has finite
order in a group H, then (g , h) has finite order in G × H

equal to lcm(o(g), o(h)).

Theorem The direct product of nontrivial cyclic groups is
cyclic if and only if they are all finite and their orders are
pairwise coprime.

For example, groups Z3 × Z5, Z4 × Z15, and Z2 × Z5 × Z7

are cyclic while groups Z4 × Z6, Z2 × Z2 × Z3, Z3 × Z, and
Z× Z are not.



Factor space

Let X be a nonempty set and ∼ be an equivalence relation on
X . Given an element x ∈ X , the equivalence class of x ,
denoted [x ]∼ or simply [x ], is the set of all elements of X that
are equivalent (i.e., related by ∼) to x :

[x ]∼ = {y ∈ X | y ∼ x}.

Theorem Equivalence classes of the relation ∼ form a
partition of the set X .

The set of all equivalence classes of ∼ is denoted X/∼ and
called the factor space (or quotient space) of X by the
relation ∼.

In the case when the set X carries some structure (algebraic,
geometric, analytic, etc.), this structure may (or may not)
induce an analogous structure on the factor space X/∼.



Examples of factor spaces

• X = G , a group; x ∼ y if and only if x ∈ yH, where H

is a fixed subgroup.

Equivalence class of an element g ∈ G is a left coset of the
subgroup H, [g ]∼ = gH. The factor space G/∼ is the set of
all left cosets of H in G . It is usually denoted G/H.

• X = G , a group; x ∼ y if and only if x ∈ Hy , where H

is a fixed subgroup.

Equivalence class of an element g ∈ G is a right coset of the
subgroup H, [g ]∼ = Hg . The factor space G/∼ is the set of
all right cosets of H in G . It is often denoted H\G .

• X = G , a group; x ∼ y if and only if x ∈ KyH = {kyh :
h ∈ H, k ∈ K}, where H and K are fixed subgroups.

In this example, [g ]∼ = KgH (a double coset). The factor
space G/∼ is usually denoted K\G/H.



Factor group

Let G be a nonempty set with a binary operation ∗. Given
an equivalence relation ∼ on G , we say that the relation ∼ is
compatible with the operation ∗ if for any g1, g2, h1, h2 ∈ G ,

g1 ∼ g2 and h1 ∼ h2 =⇒ g1 ∗ h1 ∼ g2 ∗ h2.

If this is the case, we can define an operation on the factor
space G/∼ by [g ] ⋆ [h] = [g ∗ h] for all g , h ∈ G .
Compatibility is required so that the operation ⋆ is defined
uniquely: if [g ′] = [g ] and [h′] = [h] then [g ′ ∗ h′] = [g ∗ h].

If the operation ∗ is associative (resp. commutative), then so
is ⋆. If e is the identity element for ∗, then its equivalence
class [e] is the identity element for ⋆. If h = g−1 in (G , ∗),
then [h] = [g ]−1 in (G/∼, ⋆).

Thus, if (G , ∗) is a group then (G/∼, ⋆) is also a group
called the factor group (or quotient group). Moreover,
if the group (G , ∗) is abelian then so is (G/∼, ⋆).



Question. When is an equivalence relation ∼ on a group G

compatible with the operation?

Let G be a group and assume that an equivalence relation ∼
on G is compatible with the operation (so that the factor
space G/∼ is also the factor group). For simplicity, let us
use multiplicative notation.

Lemma 1 The equivalence class of the identity element is a
subgroup of G .

Proof. Let H = [e]∼ be the equivalence class of the identity
element e. We need to show that (i) e ∈ H, (ii) h1, h2 ∈ H

=⇒ h1h2 ∈ H, and (iii) h ∈ H =⇒ h−1 ∈ H.

By reflexivity, e ∼ e. Hence e ∈ H. Futher, if h1, h2 ∈ H,
then h1 ∼ e and h2 ∼ e. By compatibility, h1h2 ∼ ee = e

so that h1h2 ∈ H. Next, if h ∈ H then h ∼ e. Also,
h−1 ∼ h−1. By compatibility, hh−1 ∼ eh−1, that is, e ∼ h−1.
By symmetry, h−1 ∼ e so that h−1 ∈ H.



Lemma 2 Each equivalence class is a left coset of the
subgroup H = [e]∼.

Proof. We need to prove that [g ]∼ = gH for all g ∈ G . We
are going to show that gH ⊂ [g ]∼ and [g ]∼ ⊂ gH.

Suppose a ∈ gH, that is, a = gh for some h ∈ H. Then
g ∼ g and h ∼ e, which implies that gh ∼ ge = g . Hence
a ∈ [g ]∼. Conversely, suppose a ∈ [g ]∼. We have
a = ea = (gg−1)a = g(g−1a). Since g−1 ∼ g−1 and a ∼ g ,
it follows that g−1a ∼ g−1g = e. Hence g−1a ∈ H so that
a = g(g−1a) ∈ gH.

Lemma 3 Each equivalence class is a right coset of the
subgroup H = [e]∼.

Proof. Analogous to the proof of Lemma 2.

Definition. A subgroup H of a group G is called normal if
gH = Hg for all g ∈ G , that is, each left coset of H is also a
right coset. Notation: H ⊳ G or H E G .



Factor group

Question. When is an equivalence relation ∼ on

a group G compatible with the operation?

Theorem Assume that the factor space G/∼ is
also a factor group. Then

(i) H = [e]∼, the equivalence class of the identity
element, is a subgroup of G ,
(ii) [g ]∼ = gH for all g ∈ G ,

(iii) G/∼ = G/H ,
(iv) the subgroup H is normal, which means that

gH = Hg for all g ∈ G .

Theorem If H is a normal subgroup of a group G ,
then G/H is a factor group.



Alternative construction of the factor group

Suppose G is a group (with multiplicative notation).
For any X ,Y ⊂ G let XY = {xy | x ∈ X , y ∈ Y }.

This “multiplication of sets” is a well-defined
operation on P(G ), the set of all subsets of G .
The operation is associative: (XY )Z = X (YZ ) for

any sets X ,Y ,Z ⊂ G . Indeed,

(XY )Z = {(xy)z | x ∈ X , y ∈ Y , z ∈ Z},

X (YZ ) = {x(yz) | x ∈ X , y ∈ Y , z ∈ Z}.

Proposition If H is a normal subgroup of G , then
for all a, b ∈ G we have (aH)(bH) = (ab)H in the
sense of the above definition.



Alternative construction of the factor group

Suppose G is a group (with multiplicative notation). For any
sets X ,Y ⊂ G let XY = {xy | x ∈ X , y ∈ Y }.

Proposition If H is a normal subgroup of G , then for all
a, b ∈ G we have (aH)(bH) = (ab)H in the sense of the
above definition.

Proof. In terms of multiplication of sets, any coset gH can be
written as {g}H. Therefore (aH)(bH) = ({a}H)({b}H).
By associativity, this is the same as {a}(H{b})H. Now
H{b} is the right coset Hb. Since the subgroup H is normal,
we have Hb = bH = {b}H. Again by associativity,

(aH)(bH) = {a}({b}H)H = ({a}{b})(HH).

Clearly, {a}{b} = {ab}. It remains to show that HH = H.
Indeed, HH ⊂ H since the subgroup H is closed under the
operation. Conversely, H = {e}H ⊂ HH.


