MATH 415
Modern Algebra I
Lecture 11:
Classification of groups (continued).
Groups of symmetries.
Group actions on a set.

Isomorphism of groups

Definition. Let G and H be groups. A function $f: G \rightarrow H$ is called an isomorphism of groups if it is bijective and $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$.
The group G is said to be isomorphic to H if there exists an isomorphism $f: G \rightarrow H$. Notation: $G \cong H$.

Theorem Isomorphism is an equivalence relation on the set of all groups.

Classification of groups consists of describing all equivalence classes of this relation and placing every known group into an appropriate class.
Theorem The following features of groups are preserved under isomorphisms: (i) the number of elements, (ii) the number of elements of a particular order, (iii) being abelian, (iv) being cyclic, (v) having a subgroup of a particular order or particular index.

Classification of abelian groups

Theorem 1 Any finitely generated abelian group is isomorphic to a direct product of cyclic groups.

Theorem 2 Any finite abelian group is isomorphic to a direct product of the form $\mathbb{Z}_{p_{1}^{m_{1}}} \times \mathbb{Z}_{p_{2}^{m_{2}}} \times \cdots \times \mathbb{Z}_{p_{r}^{m_{r}}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are prime numbers and $m_{1}, m_{2}, \ldots, m_{r}$ are positive integers.

Theorem 3 Suppose that $\mathbb{Z}^{m} \times G \cong \mathbb{Z}^{n} \times H$, where m, n are positive integers and G, H are finite groups. Then $m=n$ and $G \cong H$.

Theorem 4 Suppose that

$$
\mathbb{Z}_{p_{1}^{m_{1}}} \times \mathbb{Z}_{p_{2}^{m_{2}}} \times \cdots \times \mathbb{Z}_{p_{r} m_{r}} \cong \mathbb{Z}_{q_{1}^{n_{1}}} \times \mathbb{Z}_{q_{2}^{m_{2}}} \times \cdots \times \mathbb{Z}_{q_{s}^{n_{s}}},
$$

where p_{i}, q_{j} are prime numbers and m_{i}, n_{j} are positive integers. Then the lists $p_{1}^{m_{1}}, p_{2}^{m_{2}}, \ldots, p_{r}^{m_{r}}$ and $q_{1}^{n_{1}}, q_{2}^{n_{2}}, \ldots, q_{s}^{n_{s}}$ coincide up to rearranging their elements.

Simple groups

Definition. A nontrivial group G is called simple if it has no normal subgroups other than the trivial subgroup and G itself.

Examples.

- Cyclic group of a prime order.
- Alternating group A_{n} for $n \geq 5$.

Theorem (Jordan, Hölder) For any finite group G there exists a sequence of subgroups $H_{0}=\{e\} \triangleleft H_{1} \triangleleft \ldots \triangleleft H_{k}=G$ such that H_{i-1} is a normal subgroup of H_{i} and the factor group H_{i} / H_{i-1} is simple for $1 \leq i \leq k$. Moreover, the sequence of factor groups $H_{1} / H_{0}, H_{2} / H_{1}, \ldots, H_{k} / H_{k-1}$ is determined by G uniquely up to isomorphism and rearranging the terms.

All finite simple groups are classified (up to isomorphism, there are several infinite series and 26 sporadic groups).

In view of the Jordan-Hölder Theorem, classification of finite groups is reduced to the following problem.

Problem. Given a finite group H and a finite simple group K, classify all groups G such that $N \cong H$ and $G / N \cong K$ for some normal subgroup $N \triangleleft G$.

One solution is $G=H \times K$. Indeed, consider a projection map $p: H \times K \rightarrow K$ defined by $p(h, k)=k$. This map is a homomorphism of the group $H \times K$ onto K. We have that $\operatorname{Ker}(p)=H \times\left\{e_{K}\right\}$. Clearly, $\operatorname{Ker}(p) \cong H$. By the Fundamental Theorem on Homomorphisms, $G / \operatorname{Ker}(p) \cong K$. However the direct product need not be the only solution.

Example. $H=\mathbb{Z}_{3}, K=\mathbb{Z}_{2}, G=S_{3}$.
The symmetric group S_{3} has a subgroup, the alternating group $A_{3}=\left\{\mathrm{id},\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}$, which is isomorphic to \mathbb{Z}_{3}. The index $\left(S_{3}: A_{3}\right)$ equals 2. It follows that A_{3} is a normal subgroup and $S_{3} / A_{3} \cong \mathbb{Z}_{2}$.

Groups of symmetries

Definition. A transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a motion (or a rigid motion) if it preserves distances between points.

Theorem All motions of \mathbb{R}^{n} form a transformation group. Any motion $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be represented as $f(\mathbf{x})=A \mathbf{x}+\mathbf{x}_{0}$, where $\mathbf{x}_{0} \in \mathbb{R}^{n}$ and A is an orthogonal matrix $\left(A^{T} A=A A^{T}=l\right)$.
Given a geometric figure $F \subset \mathbb{R}^{n}$, a symmetry of F is a motion of \mathbb{R}^{n} that preserves F. All symmetries of F form a transformation group.

Example. - The dihedral group D_{n} is the group of symmetries of a regular n-gon. It consists of $2 n$ elements: n reflections, $n-1$ rotations by angles $2 \pi k / n$, $k=1,2, \ldots, n-1$, and the identity function.

Equlateral triangle

Any symmetry of a polygon maps vertices to vertices. Therefore it induces a permutation on the set of vertices. Moreover, the symmetry is uniquely recovered from the permutation.

In the case of the equilateral triangle, any permutation of vertices comes from a symmetry.

Square

In the case of the square, not every permutation of vertices comes from a symmetry of the square. The reason is that a symmetry must map adjacent vertices to adjacent vertices.

Regular tetrahedron

Any symmetry of a polyhedron maps vertices to vertices. In the case of the regular tetrahedron, any permutation of vertices comes from a symmetry.

Rotations of the circle

Let $R_{\alpha}: S^{1} \rightarrow S^{1}$ be the rotation of the circle S^{1} by angle $\alpha \in \mathbb{R}$. All rotations $R_{\alpha}, \alpha \in \mathbb{R}$ form a transformation group. Namely, $R_{\alpha} R_{\beta}=R_{\alpha+\beta}, R_{\alpha}^{-1}=R_{-\alpha}$, and $R_{0}=\mathrm{id}$.
The group of rotations is a subgroup of the group of all symmetries of the circle (the other symmetries are reflections).

Group of automorphisms

Definition. Any isomorphism of a group G onto itself is called an automorphism of G.
Automorphisms are "symmetries" of the group as an algebraic structure. All automorphisms of a given group G form a transformation group denoted $\operatorname{Aut}(G)$.
Example. • Conjugation.
Take any $g \in G$ and define a map $i_{g}: G \rightarrow G$ by
$i_{g}(x)=g x g^{-1}$. Then $i_{g}(x y)=g(x y) g^{-1}=g x\left(g^{-1} g\right) y g^{-1}$
$=\left(g \times g^{-1}\right)\left(g_{g} g^{-1}\right)=i_{g}(x) i_{g}(y)$. Hence i_{g} is a homomorphism. Further, $i_{g}\left(i_{h}(x)\right)=i_{g}\left(h x h^{-1}\right)$ $=g\left(h \times h^{-1}\right) g^{-1}=(g h) \times(g h)^{-1}=i_{g h}(x)$. Hence $i_{g} \circ i_{h}=i_{g h}$ for all $g, h \in G$. In particular, $i_{g} \circ i_{g-1}=i_{g-1} \circ i_{g}=i_{e}=\operatorname{id}_{G}$. Therefore $i_{g^{-1}}=\left(i_{g}\right)^{-1}$ so that i_{g} is bijective.
Automorphisms of the form i_{g} are called inner. They form a group $\operatorname{Inn}(G)$, which is a normal subgroup of $\operatorname{Aut}(G)$.

Group action

Definition. An action ϕ of a group G on a set X (denoted $\phi: G \curvearrowright X)$ is a function $\phi: G \times X \rightarrow X$ such that - $\phi(g h, x)=\phi(g, \phi(h, x))$ for all $g, h \in G$ and $x \in M$;

- $\phi(e, x)=x$ for all $x \in X$.

Typically, the element $\phi(g, x)$ is denoted $g x$. Then the above conditions can be rewritten as $g(h x)=(g h) x$ and $e x=x$.
The action ϕ can (and should) be regarded as a collection of transformations $T_{g}: X \rightarrow X, g \in G$, given by $T_{g}(x)=\phi(g, x)$. It follows from the definition that $T_{g} T_{h}=T_{g h}, T_{g^{-1}}=T_{g}^{-1}$, and $T_{e}=\mathrm{id}_{X}$. Hence $\left\{T_{g}\right\}_{g \in G}$ is a transformation group and $g \mapsto T_{g}$ is a homomorphism of the group G to the symmetric group S_{X}.
The group actions can be used to represent a given group as a transformation group or to parametrize a transformation group by an abstract group.

Examples of group actions

- Trivial action

Any group G acts on any nonempty set X; the action $\phi: G \curvearrowright X$ is given by $\phi(g, x)=x$.

- Scalar multiplication

The multiplicative group $\mathbb{R} \backslash\{0\}$ acts on any vector space V; the action $\phi: \mathbb{R} \backslash\{0\} \curvearrowright V$ is given by $\phi(\lambda, \mathbf{v})=\lambda \mathbf{v}$.

- Natural action of a transformation group
G is a subgroup of S_{X} (all permutations of the set X); the action $\phi: G \curvearrowright X$ is given by $\phi(f, x)=f(x)$.
- Koopman representation
G is a subgroup of S_{X}; it acts on the vector space $\mathcal{F}(X, \mathbb{R})$ of functions $f: X \rightarrow \mathbb{R}$ by change of the variable. The action $\phi: G \curvearrowright \mathcal{F}(X, \mathbb{R})$ is given by $\phi(g, f)=f \circ g^{-1}$. Note that $\left(f \circ g_{1}^{-1}\right) \circ g_{2}^{-1}=f \circ\left(g_{2} g_{1}\right)^{-1}$.

Examples of group actions

- Left adjoint action

Any group G acts on itself; the action $\phi: G \curvearrowright G$ is given by $\phi(g, x)=g x$.

- Right adjoint action

Any group G acts on itself; the action $\phi: G \curvearrowright G$ is given by $\phi(g, x)=x g^{-1}$. Note that $\left(x g_{1}^{-1}\right) g_{2}^{-1}=x\left(g_{2} g_{1}\right)^{-1}$.

- Conjugation

Any group G acts on itself; the action $\phi: G \curvearrowright G$ is given by $\phi(g, x)=g \times g^{-1}$. This action is by automorphisms.

- Action on cosets of a subgroup

Any group G acts on the factor space G / H by a subgroup H (where H need not be normal); the action $\phi: G \curvearrowright G / H$ is given by $\phi(g, x H)=(g x) H$.

An action of the additive group \mathbb{R} is called a flow.
Example. Consider an autonomous system of n ordinary differential equations of the first order

$$
\left\{\begin{array}{l}
\dot{x}_{1}=g_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \\
\dot{x}_{2}=g_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \\
\ldots \ldots \ldots \\
\ddot{x}_{n}=g_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right),
\end{array}\right.
$$

where $g_{1}, g_{2}, \ldots, g_{n}$ are differentiable functions defined in a domain $D \subset \mathbb{R}^{n}$. In vector form, $\dot{\mathbf{v}}=G(\mathbf{v})$, where $G: D \rightarrow \mathbb{R}^{n}$ is a vector field. Assume that for any $\mathbf{x} \in D$ the initial value problem $\dot{\mathbf{v}}=G(\mathbf{v}), \mathbf{v}(0)=\mathbf{x}$ has a unique solution $\mathbf{v}_{\mathbf{x}}(t), t \in \mathbb{R}$. For any $t \in \mathbb{R}$ and $\mathbf{x} \in D$ let $F_{t}(\mathbf{x})=\mathbf{v}_{\mathbf{x}}(t)$. Then the maps $F_{t}: D \rightarrow D, t \in \mathbb{R}$ describe evolution of a dynamical system governed by the ODEs. Since the system of ODEs is autonomous, it follows that $F_{t} F_{s}=F_{t+s}$ for all $t, s \in \mathbb{R}$ so that $\phi(t, \mathbf{x})=F_{t}(\mathbf{x})$ is a flow on D.

Orbits

Suppose $\phi: G \curvearrowright X$ is a group action. Consider a relation \sim on the set X such that $x \sim y$ if and only if $x=g y$ for some $g \in G$.
Proposition The relation \sim is an equivalence relation.
The equivalence class of a point $x \in X$ consists of all points of the form $g x, g \in G$. It is called the orbit of x under the action ϕ and denoted $G x$ or $\operatorname{Orb}_{\phi}(x)$.
The term "orbit" is motivated by the flows that describe celestial motions.
The action $\phi: G \curvearrowright X$ is called transitive if the entire set X forms a single orbit. For example, the adjoint actions of the group G on itself (both left and right) are transitive.
The extreme opposite of a transitive action is the trivial action, for which every point of X is a separate orbit.

Suppose $\phi: G \curvearrowright X$ is a group action.
Given an element $g \in G$, let $\operatorname{Fix}(g)=\{x \in X \mid g x=x\}$. Elements of $\operatorname{Fix}(g)$ are called fixed points of g (with respect to the action ϕ).
Given a point $x \in X$, let $\operatorname{Stab}(x)=\{g \in G \mid g x=x\}$. Then $\operatorname{Stab}(x)$ is a subgroup of G called the stabilizer (or isotropy group) of x.
The action ϕ is called faithful if $T_{g} \neq T_{h}$ whenever $g \neq h$, where $T_{g}(x)=g x$. In other words, each element of G acts on X in a distinct way. In the case of a faithful action, the groups G and $\left\{T_{g}\right\}_{g \in G}$ are isomorphic. The action ϕ is called free if $\operatorname{Stab}(x)=\{e\}$ for all $x \in X$. It is called totally non-free if $\operatorname{Stab}(x) \neq \operatorname{Stab}(y)$ whenever $x \neq y$.

Theorem (Cayley) The left adjoint action of any group G is free and hence faithful. Consequently, any group is isomorphic to a transformation group.

