MATH 415

Modern Algebra I
Lecture 15:
Rings and fields (continued). Field of quotients.

Rings

Definition. A ring is a set R, together with two binary operations usually called addition and multiplication and denoted accordingly, such that

- R is an abelian group under addition,
- R is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows:
(A0) for all $x, y \in R, x+y$ is an element of R;
(A1) $(x+y)+z=x+(y+z)$ for all $x, y, z \in R$;
(A2) there exists an element, denoted 0 , in R such that $x+0=0+x=x$ for all $x \in R$;
(A3) for every $x \in R$ there exists an element, denoted $-x$, in R such that $x+(-x)=(-x)+x=0$;
(A4) $x+y=y+x$ for all $x, y \in R$;
(M0) for all $x, y \in R, \quad x y$ is an element of R;
(M1) $(x y) z=x(y z)$ for all $x, y, z \in R$;
(D) $x(y+z)=x y+x z$ and $(y+z) x=y x+z x$ for all $x, y, z \in R$.

From rings to fields

A ring R is called a domain if it has no divisors of zero, that is, $x y=0$ implies $x=0$ or $y=0$.
A ring R is called a ring with unity if there exists an identity element for multiplication (called the unity and denoted 1).
A division ring (or skew field) is a nontrivial ring with unity in which every nonzero element has a multiplicative inverse.
A ring R is called commutative if the multiplication is commutative.
An integral domain is a nontrivial commutative ring with unity and no divisors of zero.
A field is an integral domain in which every nonzero element has a multiplicative inverse (equivalently, a commutative division ring).

$$
\begin{aligned}
\text { rings } \supset \text { domains } \supset & \supset \text { integral domains } \supset \text { fields } \\
& \supset \text { division rings } \supset
\end{aligned}
$$

Ring of functions

Let R be a ring and S be a nonempty set. Denote by $\mathcal{F}(S, R)$ the set of all functions $f: S \rightarrow R$. Given $f, g \in \mathcal{F}(S, R)$, we let $(f+g)(x)=f(x)+g(x)$ and $(f g)(x)=f(x) g(x)$ for all $x \in S$. That is, to add (or multiply) functions, we add (or multiply) their values at every point. Then $\mathcal{F}(S, R)$ is a ring.

The ring $\mathcal{F}(S, R)$ inherits many properties from the ring R, with one important exception. If R is a nontrivial ring and S has more than one element, then the ring $\mathcal{F}(S, R)$ has divisors of zero. Indeed, take any point $x_{0} \in S$, any nonzero element $r \in R$, and let

$$
f_{1}(x)=\left\{\begin{array}{ll}
r & \text { if } x=x_{0}, \\
0 & \text { if } x \in S \backslash\left\{x_{0}\right\} ;
\end{array} \quad f_{2}(x)= \begin{cases}0 & \text { if } x=x_{0}, \\
r & \text { if } x \in S \backslash\left\{x_{0}\right\} .\end{cases}\right.
$$

Then the functions f_{1} and f_{2} are nonzero elements of the ring $\mathcal{F}(S, R)$ while $f_{1} f_{2}=0$.

Ring of matrices

Let R be a ring. For any integers $m, n>0$, denote by $\mathcal{M}_{m, n}(R)$ the set of all $m \times n$ matrices with entries from R. Given two matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ in $\mathcal{M}_{m, n}(R)$, we let $A+B=\left(c_{i j}\right)$ and $A-B=\left(d_{i j}\right)$, where $c_{i j}=a_{i j}+b_{i j}$ and $d_{i j}=a_{i j}-b_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$. Given matrices $A=\left(a_{i j}\right) \in \mathcal{M}_{m, n}(R)$ and $B=\left(b_{i j}\right) \in \mathcal{M}_{n, p}(R)$, we let $A B=\left(c_{i j}\right)$, where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}$, $1 \leq i \leq m, 1 \leq j \leq p$.
Matrix multiplication is associative. Indeed, let $A=\left(a_{i j}\right)$
$\in \mathcal{M}_{m, n}(R), B=\left(b_{j k}\right) \in \mathcal{M}_{n, p}(R)$ and $C=\left(c_{k \ell}\right) \in \mathcal{M}_{p, q}(R)$. Then $(A B) C=\left(d_{i \ell}\right)$ and $A(B C)=\left(d_{i \ell}^{\prime}\right)$ are matrices in $\mathcal{M}_{n, q}(R)$. Using distributive laws in R, we obtain that

$$
d_{i \ell}=\sum_{k=1}^{p} \sum_{j=1}^{n}\left(a_{i j} b_{j k}\right) c_{k \ell}, d_{i \ell}^{\prime}=\sum_{j=1}^{n} \sum_{k=1}^{p} a_{i j}\left(b_{j k} c_{k \ell}\right) .
$$

Hence $(A B) C=A(B C)$ since R is a ring.
As a consequence, square matrices in $\mathcal{M}_{n, n}(R)$ form a ring.

Direct product of rings

Suppose $R_{1}, R_{2}, \ldots, R_{n}$ are rings. We define addition and multiplication on the Cartesian product $R_{1} \times R_{2} \times \cdots \times R_{n}$ by

$$
\begin{gathered}
\left(r_{1}, r_{2}, \ldots, r_{n}\right)+\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{n}^{\prime}\right)=\left(r_{1}+r_{1}^{\prime}, r_{2}+r_{2}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right), \\
\left(r_{1}, r_{2}, \ldots, r_{n}\right)\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{n}^{\prime}\right)=\left(r_{1} r_{1}^{\prime}, r_{2} r_{2}^{\prime}, \ldots, r_{n} r_{n}^{\prime}\right)
\end{gathered}
$$

for all $r_{i}, r_{i}^{\prime} \in R_{i}, 1 \leq i \leq n$.
Then $R_{1} \times R_{2} \times \cdots \times R_{n}$ is a ring called the direct product of rings $R_{1}, R_{2}, \ldots, R_{n}$.

The ring $R_{1} \times R_{2} \times \cdots \times R_{n}$ is commutative if each of the rings $R_{1}, R_{2}, \ldots, R_{n}$ is commutative. It is a ring with unity if each of the rings $R_{1}, R_{2}, \ldots, R_{n}$ has the unity.

If at least two of the rings $R_{1}, R_{2}, \ldots, R_{n}$ are nontrivial, then the direct product $R_{1} \times R_{2} \times \cdots \times R_{n}$ admits divisors of zero.

Complex numbers

\mathbb{C} : complex numbers.
Complex number:

$$
\begin{aligned}
& z=x+i y, \\
& \text { where } x, y \in \mathbb{R} \text { and } i^{2}=-1 \text {. }
\end{aligned}
$$

$i=\sqrt{-1}$: imaginary unit
Alternative notation: $z=x+y i$.
$x=$ real part of z,
$i y=$ imaginary part of z
$y=0 \Longrightarrow z=x$ (real number)
$x=0 \Longrightarrow z=i y$ (purely imaginary number)

We add, subtract, and multiply complex numbers as polynomials in i (but keep in mind that $i^{2}=-1$). If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right), \\
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right), \\
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{gathered}
$$

Given $z=x+i y$, the complex conjugate of z is $\bar{z}=x-i y$. The modulus of z is $|z|=\sqrt{x^{2}+y^{2}}$.

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}-(i y)^{2}=x^{2}+y^{2}=|z|^{2} .
$$

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}, \quad(x+i y)^{-1}=\frac{x-i y}{x^{2}+y^{2}} .
$$

Complex exponentials

Definition. For any $z \in \mathbb{C}$ let

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{n}}{n!}+\cdots
$$

Remark. A sequence of complex numbers $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}, \ldots$ converges to $z=x+i y$ if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$.

Theorem 1 If $z=x+i y, x, y \in \mathbb{R}$, then

$$
e^{z}=e^{x}(\cos y+i \sin y)
$$

In particular, $e^{i \phi}=\cos \phi+i \sin \phi, \phi \in \mathbb{R}$.
Theorem $2 e^{z+w}=e^{z} \cdot e^{w}$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i \phi}=\cos \phi+i \sin \phi$ for all $\phi \in \mathbb{R}$.
Proof: $e^{i \phi}=1+i \phi+\frac{(i \phi)^{2}}{2!}+\cdots+\frac{(i \phi)^{n}}{n!}+\cdots$
The sequence $1, i, i^{2}, i^{3}, \ldots, i^{n}, \ldots$ is periodic:
$\underbrace{1, i,-1,-i}, \underbrace{1, i,-1,-i}, \ldots$
It follows that

$$
\begin{aligned}
& e^{i \phi}=1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!}-\cdots+(-1)^{k} \frac{\phi^{2 k}}{(2 k)!}+\cdots \\
& +i\left(\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\cdots+(-1)^{k} \frac{\phi^{2 k+1}}{(2 k+1)!}+\cdots\right) \\
& =\cos \phi+i \sin \phi .
\end{aligned}
$$

Geometric representation

Any complex number $z=x+i y$ is represented by the vector/point $(x, y) \in \mathbb{R}^{2}$.

$$
x=r \cos \phi, y=r \sin \phi \Longrightarrow z=r(\cos \phi+i \sin \phi)=r e^{i \phi}
$$

$$
\text { If } z_{1}=r_{1} e^{i \phi_{1}} \text { and } z_{2}=r_{2} e^{i \phi_{2}} \text {, then }
$$

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\phi_{1}+\phi_{2}\right)}, z_{1} / z_{2}=\left(r_{1} / r_{2}\right) e^{i\left(\phi_{1}-\phi_{2}\right)} .
$$

From a ring to a field

Question 1. When a ring R can be extended to a field?
An obvious necessary condition is commutativity. Another necessary condition is absence of zero divisors (which is equivalent to cancellation laws).
Proposition If an element of a ring with unity has a multiplicative inverse, then it is not a divisor of zero.

Question 2. When a semigroup S can be extended to a group?

Theorem If S is a commutative semigroup with cancellation, then it can be extended to an abelian group G. Moreover, if $G=\langle S\rangle$, then any element of G is of the form $b^{-1} a$, where $a, b \in S$. Moreover, if $G=\langle S\rangle$, then the group G is unique up to isomorphism.

Theorem Any finite semigroup with cancellation is actually a group.

Lemma If S is a finite semigroup with cancellation, then for any $s \in S$ there exists an integer $k \geq 2$ such that $s^{k}=s$.
Proof: Since S is finite, the sequence s, s^{2}, s^{3}, \ldots contains repetitions, i.e., $s^{k}=s^{m}$ for some $k>m \geq 1$. If $m=1$ then we are done. If $m>1$ then $s^{m-1} s^{k-m+1}=s^{m-1} s$, which implies $s^{k-m+1}=s$.

Proof of the theorem: Take any $s \in S$. By Lemma, we have $s^{k}=s$ for some $k \geq 2$. Then $e=s^{k-1}$ is the identity element. Indeed, for any $g \in S$ we have $s^{k} g=s g$ or, equivalently, $s(e g)=s g$. After cancellation, $e g=g$. Similarly, $g e=g$ for all $g \in S$. Finally, for any $g \in S$ there is $n \geq 2$ such that $g^{n}=g=g e$. Then $g^{n-1}=e$, which implies that $g^{n-2}=g^{-1}$.

Field of quotients

Theorem A ring R with unity can be extended to a field if and only if it is an integral domain.

If R is an integral domain, then there is a (smallest) field F containing R called the quotient field of R (or the field of quotients). Any element of F is of the form $b^{-1} a$, where $a, b \in R$. The field F is unique up to isomorphism.

Examples. - The quotient field of \mathbb{Z} is \mathbb{Q}.

- The quotient field of $\mathbb{R}[X]$ is $\mathbb{R}(X)$.
- The quotient field of $\mathbb{Z}[\sqrt{2}]=\{m+n \sqrt{2} \mid$
$m, n \in \mathbb{Z}\}$ is $\mathbb{Q}[\sqrt{2}]=\{p+q \sqrt{2} \mid p, q \in \mathbb{Q}\}$.

