MATH 415

Modern Algebra I

Lecture 15:

Rings and fields (continued).

Field of quotients.

Rings

Definition. A **ring** is a set R, together with two binary operations usually called **addition** and **multiplication** and denoted accordingly, such that

- *R* is an abelian group under addition,
- R is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows:

(A0) for all
$$x, y \in R$$
, $x + y$ is an element of R ;

(A1)
$$(x + y) + z = x + (y + z)$$
 for all $x, y, z \in R$;

$$x + 0 = 0 + x = x$$
 for all $x \in R$;

(A3) for every
$$x \in R$$
 there exists an element, denoted $-x$, in R such that $x + (-x) = (-x) + x = 0$;

(A4)
$$x + y = y + x$$
 for all $x, y \in R$;

(M0) for all
$$x, y \in R$$
, xy is an element of R ;

(M1)
$$(xy)z = x(yz)$$
 for all $x, y, z \in R$;

(D)
$$x(y+z) = xy+xz$$
 and $(y+z)x = yx+zx$ for all $x, y, z \in R$.

From rings to fields

A ring R is called a **domain** if it has no divisors of zero, that is, xy = 0 implies x = 0 or y = 0.

A ring R is called a **ring with unity** if there exists an identity element for multiplication (called the **unity** and denoted 1).

A **division ring** (or **skew field**) is a nontrivial ring with unity in which every nonzero element has a multiplicative inverse.

A ring *R* is called **commutative** if the multiplication is commutative.

An **integral domain** is a nontrivial commutative ring with unity and no divisors of zero.

A **field** is an integral domain in which every nonzero element has a multiplicative inverse (equivalently, a commutative division ring).

rings \supset domains \supset integral domains \supset fields \supset division rings \supset

Ring of functions

Let R be a ring and S be a nonempty set. Denote by $\mathcal{F}(S,R)$ the set of all functions $f:S\to R$. Given $f,g\in\mathcal{F}(S,R)$, we let (f+g)(x)=f(x)+g(x) and (fg)(x)=f(x)g(x) for all $x\in S$. That is, to add (or multiply) functions, we add (or multiply) their values at every point. Then $\mathcal{F}(S,R)$ is a ring.

The ring $\mathcal{F}(S,R)$ inherits many properties from the ring R, with one important exception. If R is a nontrivial ring and S has more than one element, then the ring $\mathcal{F}(S,R)$ has divisors of zero. Indeed, take any point $x_0 \in S$, any nonzero element $r \in R$, and let

$$f_1(x) = \begin{cases} r & \text{if } x = x_0, \\ 0 & \text{if } x \in S \setminus \{x_0\}; \end{cases} \quad f_2(x) = \begin{cases} 0 & \text{if } x = x_0, \\ r & \text{if } x \in S \setminus \{x_0\}. \end{cases}$$

Then the functions f_1 and f_2 are nonzero elements of the ring $\mathcal{F}(S,R)$ while $f_1f_2=0$.

Ring of matrices

Let R be a ring. For any integers m,n>0, denote by $\mathcal{M}_{m,n}(R)$ the set of all $m\times n$ matrices with entries from R. Given two matrices $A=(a_{ij})$ and $B=(b_{ij})$ in $\mathcal{M}_{m,n}(R)$, we let $A+B=(c_{ij})$ and $A-B=(d_{ij})$, where $c_{ij}=a_{ij}+b_{ij}$ and $d_{ij}=a_{ij}-b_{ij}$, $1\leq i\leq m$, $1\leq j\leq n$. Given matrices $A=(a_{ij})\in\mathcal{M}_{m,n}(R)$ and $B=(b_{ij})\in\mathcal{M}_{n,p}(R)$, we let $AB=(c_{ij})$, where $c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}$, $1\leq i\leq m$, $1\leq j\leq p$.

Matrix multiplication is associative. Indeed, let $A = (a_{ij})$ $\in \mathcal{M}_{m,n}(R)$, $B = (b_{jk}) \in \mathcal{M}_{n,p}(R)$ and $C = (c_{k\ell}) \in \mathcal{M}_{p,q}(R)$. Then $(AB)C = (d_{i\ell})$ and $A(BC) = (d'_{i\ell})$ are matrices in $\mathcal{M}_{n,q}(R)$. Using distributive laws in R, we obtain that $d_{i\ell} = \sum_{k=1}^{p} \sum_{i=1}^{n} (a_{ij}b_{jk})c_{k\ell}$, $d'_{i\ell} = \sum_{i=1}^{n} \sum_{k=1}^{p} a_{ij}(b_{jk}c_{k\ell})$.

Hence (AB)C = A(BC) since R is a ring.

As a consequence, square matrices in $\mathcal{M}_{n,n}(R)$ form a ring.

Direct product of rings

Suppose R_1, R_2, \ldots, R_n are rings. We define addition and multiplication on the Cartesian product $R_1 \times R_2 \times \cdots \times R_n$ by $(r_1, r_2, \ldots, r_n) + (r'_1, r'_2, \ldots, r'_n) = (r_1 + r'_1, r_2 + r'_2, \ldots, r_n + r'_n),$ $(r_1, r_2, \ldots, r_n)(r'_1, r'_2, \ldots, r'_n) = (r_1r'_1, r_2r'_2, \ldots, r_nr'_n)$

for all $r_i, r'_i \in R_i$, $1 \le i \le n$.

Then $R_1 \times R_2 \times \cdots \times R_n$ is a ring called the **direct product** of rings R_1, R_2, \ldots, R_n .

The ring $R_1 \times R_2 \times \cdots \times R_n$ is commutative if each of the rings R_1, R_2, \ldots, R_n is commutative. It is a ring with unity if each of the rings R_1, R_2, \ldots, R_n has the unity.

If at least two of the rings R_1, R_2, \dots, R_n are nontrivial, then the direct product $R_1 \times R_2 \times \dots \times R_n$ admits divisors of zero.

Complex numbers

 \mathbb{C} : complex numbers.

Complex number:
$$\boxed{z=x+iy},$$
 where $x,y\in\mathbb{R}$ and $i^2=-1.$

$$i = \sqrt{-1}$$
: imaginary unit

Alternative notation: z = x + yi.

$$x = \text{real part of } z$$
,
 $iy = \text{imaginary part of } z$

$$y = 0 \implies z = x$$
 (real number)
 $x = 0 \implies z = iy$ (purely imaginary number)

We add, subtract, and multiply complex numbers as polynomials in i (but keep in mind that $i^2 = -1$). If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, then

If
$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$, then
$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2),$$

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2),$$

Given z = x + iy, the **complex conjugate** of z is $|z| = \sqrt{x^2 + y^2}$

 $z_1z_2=(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1).$

$$\bar{z} = x - iy$$
. The **modulus** of z is $|z| = \sqrt{x^2 + y^2}$. $z\bar{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 + y^2 = |z|^2$.

$$z^{-1} = \frac{\bar{z}}{|z|^2}, \qquad (x+iy)^{-1} = \frac{x-iy}{x^2+y^2}.$$

Complex exponentials

Definition. For any $z \in \mathbb{C}$ let

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \cdots + \frac{z^{n}}{n!} + \cdots$$

Remark. A sequence of complex numbers $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$,... converges to z = x + iy if $x_n \to x$ and $y_n \to y$ as $n \to \infty$.

Theorem 1 If z = x + iy, $x, y \in \mathbb{R}$, then $e^z = e^x(\cos y + i \sin y)$.

In particular, $e^{i\phi} = \cos \phi + i \sin \phi$, $\phi \in \mathbb{R}$.

Theorem 2 $e^{z+w} = e^z \cdot e^w$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i\phi} = \cos \phi + i \sin \phi$ for all $\phi \in \mathbb{R}$.

Proof:
$$e^{i\phi} = 1 + i\phi + \frac{(i\phi)^2}{2!} + \cdots + \frac{(i\phi)^n}{n!} + \cdots$$

The sequence $1, i, i^2, i^3, \dots, i^n, \dots$ is periodic: $\underbrace{1, i, -1, -i}_{j, \dots, j, \dots, j, \dots}$.

$$e^{i\phi} = 1 - \frac{\phi^2}{2!} + \frac{\phi^4}{4!} - \dots + (-1)^k \frac{\phi^{2k}}{(2k)!} + \dots + i\left(\phi - \frac{\phi^3}{3!} + \frac{\phi^5}{5!} - \dots + (-1)^k \frac{\phi^{2k+1}}{(2k+1)!} + \dots\right)$$

$$= \cos\phi + i\sin\phi.$$

Geometric representation

Any complex number z = x + iy is represented by the vector/point $(x, y) \in \mathbb{R}^2$.

$$x = r \cos \phi$$
, $y = r \sin \phi \implies z = r(\cos \phi + i \sin \phi) = re^{i\phi}$
If $z_1 = r_1 e^{i\phi_1}$ and $z_2 = r_2 e^{i\phi_2}$, then $z_1 z_2 = r_1 r_2 e^{i(\phi_1 + \phi_2)}$, $z_1/z_2 = (r_1/r_2)e^{i(\phi_1 - \phi_2)}$.

From a ring to a field

Question 1. When a ring R can be extended to a field?

An obvious necessary condition is commutativity. Another necessary condition is absence of zero divisors (which is equivalent to cancellation laws).

Proposition If an element of a ring with unity has a multiplicative inverse, then it is not a divisor of zero.

Question 2. When a semigroup *S* can be extended to a group?

Theorem If S is a commutative semigroup with cancellation, then it can be extended to an abelian group G. Moreover, if $G = \langle S \rangle$, then any element of G is of the form $b^{-1}a$, where $a,b \in S$. Moreover, if $G = \langle S \rangle$, then the group G is unique up to isomorphism.

Theorem Any finite semigroup with cancellation is actually a group.

Lemma If S is a finite semigroup with cancellation, then for any $s \in S$ there exists an integer $k \geq 2$ such that $s^k = s$.

Proof: Since S is finite, the sequence s, s^2, s^3, \ldots contains repetitions, i.e., $s^k = s^m$ for some $k > m \ge 1$. If m = 1 then we are done. If m > 1 then $s^{m-1}s^{k-m+1} = s^{m-1}s$, which implies $s^{k-m+1} = s$.

Proof of the theorem: Take any $s \in S$. By Lemma, we have $s^k = s$ for some $k \geq 2$. Then $e = s^{k-1}$ is the identity element. Indeed, for any $g \in S$ we have $s^k g = sg$ or, equivalently, s(eg) = sg. After cancellation, eg = g. Similarly, ge = g for all $g \in S$. Finally, for any $g \in S$ there is $n \geq 2$ such that $g^n = g = ge$. Then $g^{n-1} = e$, which implies that $g^{n-2} = g^{-1}$.

Field of quotients

Theorem A ring R with unity can be extended to a field if and only if it is an integral domain.

If R is an integral domain, then there is a (smallest) field F containing R called the **quotient field** of R (or the **field of quotients**). Any element of F is of the form $b^{-1}a$, where $a, b \in R$. The field F is unique up to isomorphism.

Examples. • The quotient field of \mathbb{Z} is \mathbb{Q} .

- The quotient field of $\mathbb{R}[X]$ is $\mathbb{R}(X)$.
- The quotient field of $\mathbb{Z}[\sqrt{2}] = \{m + n\sqrt{2} \mid m, n \in \mathbb{Z}\}$ is $\mathbb{Q}[\sqrt{2}] = \{p + q\sqrt{2} \mid p, q \in \mathbb{Q}\}.$