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Lecture 16:
Modular arithmetic.



Congruences

Let n be a positive integer. The integers a and b are called
congruent modulo n if they have the same remainder when
divided by n. An equivalent condition is that n divides the
difference a − b.

Notation. a ≡ b mod n or a ≡ b (mod n).

Examples. 12 ≡ 4mod 8, 24 ≡ 0mod 6, 31 ≡ −4mod 35.

Proposition If a ≡ bmod n then for any integer c,
(i) a + cn ≡ bmod n;
(ii) a + c ≡ b + c mod n;
(iii) ac ≡ bc mod n.

Indeed, if a − b = kn, where k is an integer, then
(a + cn)− b = a − b + cn = (k + c)n,
(a + c)− (b + c) = a − b = kn, and
ac − bc = (a − b)c = (kc)n.



More properties of congruences

Proposition If a ≡ a′mod n and b ≡ b′mod n,
then (i) a + b ≡ a′ + b′mod n;

(ii) a − b ≡ a′ − b′mod n;
(iii) ab ≡ a′b′mod n.

Proof: Since a ≡ a′ mod n and b ≡ b′ mod n, the number n
divides a − a′ and b − b′, i.e., a − a′ = kn and b − b′ = ℓn,
where k, ℓ ∈ Z. Then n also divides

(a+ b)−(a′ + b′) = (a− a′)+(b− b′) = kn+ ℓn = (k + ℓ)n,

(a− b)−(a′− b′) = (a− a′)−(b− b′) = kn− ℓn = (k − ℓ)n,

ab − a′b′ = ab − ab′ + ab′ − a′b′ = a(b − b′)+(a − a′)b′

= a(ℓn) + (kn)b′ = (aℓ+ kb′)n.



Divisibility of decimal integers

Let dkdk−1 . . . d3d2d1 be the decimal notation of a positive
integer n (0 ≤ di ≤ 9). Then

n = d1 + 10d2 + 102d3 + · · ·+ 10k−2dk−1 + 10k−1dk .

Proposition 1 The integer n is divisible by 2, 5 or 10 if and
only if the last digit d1 is divisible by the same number.

Proposition 2 The integer n is divisible by 4, 20, 25, 50 or
100 if and only if d2d1 is divisible by the same number.

Proposition 3 The integer n is divisible by 3 or 9 if and only
if the sum of its digits dk + · · ·+ d2 + d1 is divisible by the
same number.

Proposition 4 The integer n is divisible by 11 if and only if
the alternating sum of its digits
(−1)k−1dk + · · ·+ d3 − d2 + d1 is divisible by 11.

Hint: 10m ≡ 1mod 9, 10m ≡ 1mod 3, 10m ≡ (−1)m mod 11.



Congruence classes

Given an integer a, the congruence class of a modulo n is
the set of all integers congruent to a modulo n.

Notation. [a]n or simply [a]. Also denoted a + nZ as
[a]n = {a + nk | k ∈ Z}. Also denoted amod n.

Examples. [0]2 is the set of even integers, [1]2 is the set of
odd integers, [2]4 is the set of even integers not divisible by 4.

If n divides a positive integer m, then every congruence class
modulo n is the union of m/n congruence classes modulo m.
For example, [2]4 = [2]8 ∪ [6]8.

The congruence class [a]n = a + nZ is a coset of the
subgroup nZ of the group Z. Hence the set of all congruence
classes modulo n is the factor space Z/nZ. It is usually
identified with Zn so that Zn = {[0]n, [1]n, [2]n, . . . , [n−1]n}.



Modular arithmetic

Modular arithmetic is an arithmetic on the set Zn = Z/nZ
for some n ≥ 1. The arithmetic operations on Zn are defined
as follows. For any integers a and b, we let

[a]n + [b]n = [a + b]n,

[a]n − [b]n = [a − b]n,

[a]n [b]n = [ab]n.

Theorem The arithmetic operations on Zn are defined
uniquely, namely, they do not depend on the choice of
representatives a, b for the congruence classes.

Proof: Let a′ be another representative of [a]n and b′ be
another representative of [b]n. Then a′ ≡ amod n and
b′ ≡ bmod n. According to a previously proved proposition,
this implies a′ + b′ ≡ a + bmod n, a′ − b′ ≡ a − bmod n

and a′b′ ≡ abmod n. In other words, [a′ + b′]n = [a + b]n,
[a′ − b′]n = [a − b]n and [a′b′]n = [ab]n.



Invertible congruence classes

The set Zn = Z/nZ, with addition and multiplication defined
above, forms a commutative ring with unity. The unity is [1]n.
We say that a congruence class [a]n is invertible (or the
integer a is invertible modulo n) if [a]n has a multiplicative
inverse in Zn, that is, ab ≡ 1mod n for some b ∈ Z. If this
is the case, then b is called a multiplicative inverse of a
modulo n.

The set of all invertible congruence classes in Zn is denoted Gn

or Z∗

n. It is a multiplicative group (which is true for any ring
with unity).

Theorem A nonzero congruence class [a]n is invertible if and
only if gcd(a, n) = 1. Otherwise it is a divisor of zero.

Corollary The ring Zn is a field if and only if n is prime.



Theorem A nonzero congruence class [a]n is
invertible if and only if gcd(a, n) = 1. Otherwise

[a]n is a divisor of zero.

Proof: Let d = gcd(a, n). If d > 1 then n/d and
a/d are integers, [n/d ]n 6= [0]n, and [a]n[n/d ]n =

= [an/d ]n = [a/d ]n[n]n = [a/d ]n[0]n = [0]n. Hence
[a]n is a divisor of zero.

Now consider the case gcd(a, n) = 1. In this case 1
is an integral linear combination of a and n:
ma + kn = 1 for some m, k ∈ Z. Then

[1]n = [ma + kn]n = [ma]n = [m]n[a]n.

Thus [a]n is invertible and [a]−1

n
= [m]n.



Linear congruences

Linear congruence is a congruence of the form ax ≡ bmod n,
where x is an integer variable. We can regard it as a linear
equation in Zn: [a]nX = [b]n.

In the case b = 1, solving the linear congruence is equivalent
to finding the inverse of the congruence class [a]n. In the case
b = 0, it is equivalent to determining if [a]n is a zero-divisor.

Proposition 1 If the congruence class [a]n is invertible and a′

is a multiplicative inverse of a modulo n, then the congruence
ax ≡ bmod n is equivalent to x ≡ a′b mod n.

Proposition 2 Let a, b, c, n ∈ Z and c, n ≥ 1. Then the
congruence ac ≡ bc mod nc is equivalent to a ≡ bmod n.

Proposition 3 Let a, b, c, n ∈ Z and c, n ≥ 1. If
ac ≡ bc mod n and gcd(c, n) = 1, then a ≡ bmod n.



Theorem The linear congruence ax ≡ bmod n has a
solution if and only if d = gcd(a, n) divides b. If this is the
case then the solution set consists of d congruence classes
modulo n that form a single congruence class modulo n/d .

Proof: If the congruence has a solution x , then ax = b + kn

for some k ∈ Z. Hence b = ax − kn, which is divisible by
gcd(a, n).

Conversely, assume that d divides b. Then the linear
congruence is equivalent to a′x ≡ b′ modm, where a′ = a/d ,
b′ = b/d and m = n/d . In other words, [a′]mX = [b′]m,
where X = [x ]m.

We have gcd(a′,m) = gcd(a/d , n/d) = gcd(a, n)/d = 1.
Hence the congruence class [a′]m is invertible. It follows that
all solutions x of the linear congruence form a single
congruence class modulo m, X = [a′]−1

m [b′]m. This
congruence class splits into d distinct congruence classes
modulo n = md .



Problem. Solve the congruence 12x ≡ 6mod 21.

⇐⇒ 4x ≡ 2mod 7 ⇐⇒ 2x ≡ 1mod 7

⇐⇒ [x ]7 = [2]−1

7
= [4]7

⇐⇒ [x ]21 = [4]21 or [11]21 or [18]21.

Problem. Find all integer solutions of the
equation 12x − 21y = 6.

For any integer solution of the equation, the number x is a
solution of the linear congruence 12x ≡ 6mod 21. By the
above, x ≡ 4mod 7, that is, x = 4 + 7k for some k ∈ Z.
Then y = (12x − 6)/21 = (12(4 + 7k)− 6)/21 = 2 + 4k,
which is also integer. Thus the general integer solution is
x = 4 + 7k, y = 2 + 4k, where k ∈ Z.



Corollaries of Lagrange’s Theorem

Fermat’s Little Theorem If p is a prime number then
ap−1 ≡ 1mod p for any integer a that is not a multiple of p.

Proof: If a is not a multiple of p then [a]p is in Gp, the
multiplicative group of invertible congruence classes modulo p.
Lagrange’s Theorem implies that the order of [a]p in Gp

divides |Gp| = p − 1. It follows that [a]p−1
p = [1]p, which

means that ap−1 ≡ 1mod p.

Euler’s Theorem If n is a positive integer and φ(n) is the
number of integers between 1 and n coprime with n, then
aφ(n) ≡ 1mod n for any integer a coprime with n.

Proof: aφ(n) ≡ 1mod n means that [a]
φ(n)
n = [1]n. The

number a is coprime with n means that the congruence class
[a]n is in Gn. It remains to notice that |Gn| = φ(n) and
apply Lagrange’s Theorem.



Problem. Determine the last two digits of 32021.

The last two digits form the remainder under division by 100.

First let us compute φ(100). Since 100 = 22 · 52, an integer
k is coprime with 100 if and only if it is not divisible by 2 or 5.
Among integers from 1 to 100, there are 50 = 100/2 even
numbers and 20 = 100/5 numbers divisible by 5. Note that
some of them are divisible by both 2 and 5. These are exactly
numbers divisible by 10. There are 10 = 100/10 such
numbers. We conclude that φ(100)=100−50−20+10=40.

By Euler’s Theorem, 340 ≡ 1mod 100. Then

[32021] = [3]2021 = [3]40·50+21 = ([3]40)50 [3]21 =[3]21

= ([3]5)4 [3] = [243]4 [3] = [43]4 [3] = [1849]2 [3] = [49]2 [3]

= ([98][2]−1)2 [3] = ([−2][2]−1)2 [3] = [−1]2 [3] = [3].

Thus 32021 = ...03.


