MATH 415 Modern Algebra I

Lecture 20: Ideals and factor rings.

Subrings

Definition. Suppose R and R_0 are rings. We say that R_0 is a **subring** (or **sub-ring**) of R if R_0 is a subset of R and the operations on R_0 (addition and multiplication) agree with those on R.

Let *R* be a ring. Given a subset $S \subset R$, we can define addition and multiplication on *S* by restricting the corresponding operations from *R* to *S*. Then *S* is a subring of *R* as soon as it is a ring.

Proposition 1 The subset S is a subring if and only if it (i) contains the zero: $0 \in S$, (ii) is closed under addition: $x, y \in S \implies x + y \in S$, (iii) is closed under taking the negative: $x \in S \implies -x \in S$, (iv) is closed under multiplication: $x, y \in S \implies xy \in S$. **Proposition 2** A subset S of a ring is a subring with respect to the induced operations if and only if it is

(i) nonempty, and

(ii) closed under addition, subtraction and multiplication:

 $x, y \in S \implies x + y, x - y, xy \in S.$

Proposition 3 A subset S of a ring R is a subring with respect to the induced operations if and only if it is (i) a subgroup of the additive group R, and (ii) closed under multiplication: $x, y \in S \implies xy \in S$.

Proposition 4 A subset S of a ring R is a subring with respect to the induced operations if and only if it is (i) a subgroup of the additive group R, and (ii) a subsemigroup of the multiplicative semigroup R.

Examples. • $R = \mathbb{Z}$.

Since the additive group \mathbb{Z} is cyclic, any subgroup is also cyclic. The subgroups are the trivial group $\{0\}$ and groups of the form $m\mathbb{Z} = \{mx \mid x \in \mathbb{Z}\}$, where *m* is a positive integer. All these subgroups are also subrings.

•
$$R = \mathbb{Z}_n$$
.

Since the additive group \mathbb{Z}_n is cyclic, any subgroup is also cyclic. The subgroups are the trivial group $\{0\}$ and groups of the form $m\mathbb{Z}_n = \{mx \mid x \in \mathbb{Z}_n\}$, where *m* is a proper divisor of *n*. All these subgroups are also subrings.

Remark. If R_0 is a subring of R, then the zero element in R_0 is the same as in R. On the other hand, if R and R_0 are both rings with unity, then the unity in R_0 may not be the same as in R. Indeed, in the ring \mathbb{Z}_{10} , the unity is 1, while in its subring $2\mathbb{Z}_{10} = \{0, 2, 4, 6, 8\}$, the unity is 6.

Ideals

Definition. Suppose R is a ring. We say that a subset $S \subset R$ is a **left ideal** of R if

• S is a subgroup of the additive group R,

• S is closed under left multiplication by any elements of R: $s \in S$, $x \in R \implies xs \in S$.

We say that a subset $S \subset R$ is a **right ideal** of R if

• S is a subgroup of the additive group R,

• S is closed under right multiplication by any elements of R: $s \in S$, $x \in R \implies sx \in S$.

All left ideals and right ideals of the ring R are also called **one-sided ideals**. A **two-sided ideal** (or simply an **ideal**) of the ring R is a subset $S \subset R$ that is both a left ideal and a right ideal. That is,

• S is a subgroup of the additive group R,

• S is closed under multiplication by any elements of R: $s \in S$, $x \in R \implies xs, sx \in S$.

Basic facts on the ideals

• Any left, right or two-sided ideal is a subring (with respect to the induced operations).

• In a commutative ring, the notions of a left ideal, a right ideal, and a two-sided ideal are equivalent.

• The trivial subring $\{0\}$ is a two-sided ideal (all other ideals are called **nonzero**).

• Any ring is a two-sided ideal of itself (all other ideals are called **proper**).

• In a ring with unity, a one-sided ideal is proper if and only if it does not contain the unity.

• For any element *a* of a ring *R*, the set $Ra = \{xa \mid x \in R\}$ is a left ideal (called **principal**).

• For any element *a* of a ring *R*, the set $aR = \{ax \mid x \in R\}$ is a right ideal (called **principal**).

Examples of ideals

•
$$R = \mathbb{Z}$$
.

The subrings are $\{0\}$ and $m\mathbb{Z} = \{mx \mid x \in \mathbb{Z}\}$, where *m* is a positive integer. Each of them is a principal ideal.

•
$$R = \mathbb{Z}_n$$
.

The subrings are $\{0\}$ and $m\mathbb{Z}_n = \{mx \mid x \in \mathbb{Z}_n\}$, where *m* is a proper divisor of *n*. Each of them is a principal ideal.

•
$$R = \mathbb{Z} \times \mathbb{Z}$$
.

A subset $\{(m, m) \mid m \in \mathbb{Z}\}$ is a subring but not an ideal. One can show that all ideals are principal.

• $R = R_1 \times R_2$, a direct product of rings.

If I_1 is a left ideal in R_1 and I_2 is a left ideal in R_2 , then $I_1 \times I_2$ is a left ideal in $R_1 \times R_2$. In the case R_1 and R_2 are rings with unity, any left ideal is of that form (the same for right ideals).

Factor space

Let X be a nonempty set and \sim be an equivalence relation on X. Given an element $x \in X$, the **equivalence class** of x, denoted $[x]_{\sim}$ or simply [x], is the set of all elements of X that are **equivalent** (i.e., related by \sim) to x:

$$[x]_{\sim} = \{ y \in X \mid y \sim x \}.$$

Theorem Equivalence classes of the relation \sim form a partition of the set *X*.

The set of all equivalence classes of \sim is denoted X/\sim and called the **factor space** (or **quotient space**) of X by the relation \sim .

In the case when the set X carries some structure (algebraic, geometric, analytic, etc.), this structure may (or may not) induce an analogous structure on the factor space X/\sim .

Factor ring

Let *R* be a ring. Given an equivalence relation \sim on *R*, we say that the relation \sim is **compatible** with the operations (addition and multiplication) in *R* if for any $r_1, r_2, s_1, s_2 \in R$,

 $r_1 \sim r_2$ and $s_1 \sim s_2 \implies r_1 + s_1 \sim r_2 + s_2$ and $r_1 s_1 \sim r_2 s_2$.

If this is the case, we can define operations on the factor space R/\sim by [r]+[s]=[r+s] and [r][s]=[rs] for all $r, s \in R$ (compatibility is required so that the operations are defined uniquely).

Then R/\sim is also a ring called the **factor ring** (or **quotient** ring) of R.

If the ring R is commutative, then so is the factor ring R/\sim . If R has the unity 1, then R/\sim has the unity [1]. **Question.** When is an equivalence relation \sim on a ring *R* compatible with the operations?

Let R be a ring and assume that an equivalence relation \sim on R is compatible with the operations (so that the factor space R/\sim is also the factor ring).

Since R is an additive group and the relation \sim is compatible with addition, the factor ring R/\sim is a factor group in the first place. As shown in group theory, it follows that

• $I = [0]_{\sim}$, the equivalence class of the zero, is a normal subgroup of R, and

• $R/\sim = R/I$, which means that every equivalence class is a coset of I, $[r]_{\sim} = r + I$ for all $r \in R$.

The fact that the subgroup I is normal is redundant here. Indeed, the additive group R is abelian and hence all subgroups are normal. **Lemma** The subgroup *I* is a two-sided ideal in *R*.

Proof: Let $a \in I$ and $x \in R$. We need to show that $xa, ax \in I$. Since $I = [0]_{\sim}$, we have $a \sim 0$. By reflexivity, $x \sim x$. By compatibility with multiplication, $xa \sim x0 = 0$ and $ax \sim 0x = 0$. Thus $xa, ax \in I$.

Theorem If *I* is a two-sided ideal of a ring *R*, then the factor group R/I is, indeed, a factor ring.

Proof: Let \sim be a relation on R such that $a_1 \sim a_2$ if and only if $a_1 \in a_2 + I$. Then \sim is an equivalence relation compatible with addition, and the factor space R/\sim coincides with the factor group R/I. To prove that R/I is a factor ring, we only need to show that the relation \sim is compatible with multiplication. Suppose $a_1 \sim a_2$ and $b_1 \sim b_2$. Then $a_1 = a_2 + h$ and $b_1 = b_2 + h'$ for some $h, h' \in I$. We obtain $a_1b_1 = (a_2 + h)(b_2 + h') = a_2b_2 + (a_2h' + hb_2 + hh')$. Since I is a two-sided ideal, the products a_2h' , hb_2 and hh' are contained in I, and so is their sum. Thus $a_1b_1 \sim a_2b_2$.