MATH 415

Modern Algebra I

Lecture 21:
 Follow-up on Exam 2. Homomorphisms of rings.

Follow-up on Exam 2

Problem. Let M be the set of all numbers of the form $m+n \sqrt{3}$, where m and n are integers of the same parity. Under the usual addition and multiplication, is M a ring? Is it a field?

First let us get a better formula for a general element of M. If m and n are integers of the same parity, then $m=n+2 k$ for some $k \in \mathbb{Z}$. Consequently, $m+n \sqrt{3}=2 k+(1+\sqrt{3}) n$. In the latter representation, k and n can be arbitrary integers.
To check whether M is a ring is to check whether it is a subring of \mathbb{R}. For the latter, we only need to check if it is closed under addition, subtraction and multiplication.

Let $x_{1}, x_{2} \in M$. We have $x_{1}=2 k_{1}+(1+\sqrt{3}) n_{1}$ and $x_{2}=2 k_{2}+(1+\sqrt{3}) n_{2}$ for some $k_{1}, n_{1}, k_{2}, n_{2} \in \mathbb{Z}$. Then

$$
\begin{aligned}
& x_{1}+x_{2}=2\left(k_{1}+k_{2}\right)+(1+\sqrt{3})\left(n_{1}+n_{2}\right) \text {, } \\
& x_{1}-x_{2}=2\left(k_{1}-k_{2}\right)+(1+\sqrt{3})\left(n_{1}-n_{2}\right) \text {, } \\
& x_{1} x_{2}=4 k_{1} k_{2}+2(1+\sqrt{3})\left(k_{1} n_{2}+n_{1} k_{2}\right)+(1+\sqrt{3})^{2} n_{1} n_{2} \\
& =2\left(2 k_{1} k_{2}\right)+(1+\sqrt{3})\left(2 k_{1} n_{2}+2 n_{1} k_{2}\right)+(4+2 \sqrt{3}) n_{1} n_{2} \\
& =2\left(2 k_{1} k_{2}+n_{1} n_{2}\right)+(1+\sqrt{3})\left(2 k_{1} n_{2}+2 n_{1} k_{2}+2 n_{1} n_{2}\right) \text {. }
\end{aligned}
$$

We conclude that M is a ring. However M is not a ring with unity since it does not contain 1 . In particular, M is not a field.

Remark. In general, if a subring R_{0} of a ring R with unity does not contain the unity 1_{R} of R, it may still have its own unity $1_{R_{0}}$. But this is never the case if R is a domain (and hence satisfies cancellation laws). Indeed, we would have $1_{R_{0}} 1_{R_{0}}=1_{R_{0}}=1_{R} 1_{R_{0}}$ and, after cancellation, $1_{R_{0}}=1_{R}$.

Problem. Let \mathbb{F}_{4} be a field with 4 elements and \mathbb{F}_{2} be its subfield with 2 elements. Find a polynomial $p \in \mathbb{F}_{2}[x]$ that has no zeros in \mathbb{F}_{2}, but has a zero in \mathbb{F}_{4}.

Let $\mathbb{F}_{4}=\{0,1, a, b\}$. Then $\mathbb{F}_{2}=\{0,1\}$. Since $\{1, a, b\}$ is a multiplicative group (of order 3), it follows from Lagrange's Theorem that $x^{3}=1$ for all $x \in\{1, a, b\}$. In other words, 1 , a and b are zeros of the polynomial $q(x)=x^{3}-1$.
We have $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, which holds over any field. It follows that a and b are also zeros of the polynomial $p(x)=x^{2}+x+1$. Note that $p(0)=p(1)=1 \neq 0$.

Homomorphism of rings

Definition. Let R and R^{\prime} be rings. A function $f: R \rightarrow R^{\prime}$ is called a homomorphism of rings if $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$ and $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ for all $r_{1}, r_{2} \in R$.

That is, f is a homomorphism of the binary structure $(R,+)$ to ($R^{\prime},+$) and, simultaneously, a homomorphism of the binary structure (R, \cdot) to $\left(R^{\prime}, \cdot\right)$. In particular, f is a homomorphism of additive groups, which implies the following properties:

- $f(0)=0$,
- $f(-r)=-f(r)$ for all $r \in R$,
- if H is an additive subgroup of R then $f(H)$ is an additive subgroup of R^{\prime},
- if H^{\prime} is an additive subgroup of R^{\prime} then $f^{-1}\left(H^{\prime}\right)$ is an additive subgroup of R,
- $f^{-1}(0)$ is an additive subgroup of R, called the kernel of f and denoted $\operatorname{Ker}(f)$.

More properties of homomorphisms

Let $f: R \rightarrow R^{\prime}$ be a homomorphism of rings.

- If H is a subring of R, then $f(H)$ is a subring of R^{\prime}.

We already know that $f(H)$ is an additive subgroup of R^{\prime}. It remains to show that it is closed under multiplication in R^{\prime}. Let $r_{1}^{\prime}, r_{2}^{\prime} \in f(H)$. Then $r_{1}^{\prime}=f\left(r_{1}\right)$ and $r_{2}^{\prime}=f\left(r_{2}\right)$ for some $r_{1}, r_{2} \in H$. Hence $r_{1}^{\prime} r_{2}^{\prime}=f\left(r_{1}\right) f\left(r_{2}\right)=f\left(r_{1} r_{2}\right)$, which is in $f(H)$ since H is closed under multiplication in R.

- If H^{\prime} is a subring of R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a subring of R. We already know that $f^{-1}\left(H^{\prime}\right)$ is an additive subgroup of R. It remains to show that it is closed under multiplication in R. Let $r_{1}, r_{2} \in f^{-1}\left(H^{\prime}\right)$, that is, $f\left(r_{1}\right), f\left(r_{2}\right) \in H^{\prime}$. Then $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ is in H^{\prime} since H^{\prime} is closed under multiplication in R^{\prime}. Hence $r_{1} r_{2} \in f^{-1}\left(H^{\prime}\right)$.

More properties of homomorphisms

- If H^{\prime} is a left ideal in R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a left ideal in R.
We already know that $f^{-1}\left(H^{\prime}\right)$ is a subring of R. It remains to show that $r \in R$ and $a \in f^{-1}\left(H^{\prime}\right)$ imply $r a \in f^{-1}\left(H^{\prime}\right)$. We have $f(a) \in H^{\prime}$. Then $f(r a)=f(r) f(a)$ is in H^{\prime} since H^{\prime} is a left ideal in R^{\prime}. In other words, $r a \in f^{-1}\left(H^{\prime}\right)$.
- If H^{\prime} is a right ideal in R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a right ideal in R.
- If H^{\prime} is a two-sided ideal in R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a two-sided ideal in R.
- The kernel $\operatorname{Ker}(f)$ is a two-sided ideal in R. Indeed, $\operatorname{Ker}(f)$ is the pre-image of the trivial ideal $\{0\}$ in R^{\prime}.

More properties of homomorphisms

- If an element $a \in R$ is idempotent in R (that is, $a^{2}=a$) then $f(a)$ is idempotent in R^{\prime}.
Indeed, $(f(a))^{2}=f\left(a^{2}\right)=f(a)$.
- If 1_{R} is the unity in R then $f\left(1_{R}\right)$ is the unity in $f(R)$.

Let $r^{\prime} \in f(R)$. Then $r^{\prime}=f(r)$ for some $r \in R$. We obtain $r^{\prime} f\left(1_{R}\right)=f(r) f\left(1_{R}\right)=f\left(r \cdot 1_{R}\right)=f(r)=r^{\prime}$ and $f\left(1_{R}\right) r^{\prime}=f\left(1_{R}\right) f(r)=f\left(1_{R} \cdot r\right)=f(r)=r^{\prime}$.

- If 1_{R} is the unity in R and R^{\prime} is a domain with unity, then either $f\left(1_{R}\right)$ is the unity in R^{\prime} or else the homomorphism f is identically zero.
If $f\left(1_{R}\right)=0$ then f is identically zero: $f(r)=f\left(r \cdot 1_{R}\right)=$ $f(r) f\left(1_{R}\right)=f(r) \cdot 0=0$ for all $r \in R$. Otherwise $f\left(1_{R}\right)$ is a nonzero idempotent element. We know that in a domain with unity, the only idempotent elements are the zero and the unity.

Examples of homomorphisms

- Trivial homomorphism.

Given any rings R and R^{\prime}, let $f(r)=0_{R^{\prime}}$ for all $r \in R$, where $0_{R^{\prime}}$ is the zero element in R^{\prime}. Then $f: R \rightarrow R^{\prime}$ is a homomorphism of rings.

- Residue modulo n of an integer.

For any $k \in \mathbb{Z}$ let $f(k)$ be the remainder of k after division by n. Then $f: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is a homomorphism of rings.

- Homomorphisms of \mathbb{Z}.

Let R be any ring and i be any idempotent element in R. Then there exists a unique homomorphism $f: \mathbb{Z} \rightarrow R$ such that $f(1)=i$. It can be defined inductively: $f(1)=i$, $f(k+1)=f(k)+i$ for all $k \geq 1, f(0)=0$ and $f(-k)=-f(k)$ for all $k \geq 1$.

Suppose $f: R \rightarrow R^{\prime}$ is a homomorphism of rings. It induces homomorphisms of certain rings built from R and R^{\prime}.

- Rings of functions.

Given a nonempty set S, let $\mathcal{F}(S, R)$ be the ring of all functions $h: S \rightarrow R$. A homomorphism $\phi: \mathcal{F}(S, R) \rightarrow \mathcal{F}\left(S, R^{\prime}\right)$ is given by $\phi(h)=f \circ h$.

- Rings of polynomials.

A homomorphism $\phi: R[x] \rightarrow R^{\prime}[x]$ is given by $\phi\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)=$ $f\left(a_{0}\right)+f\left(a_{1}\right) x+f\left(a_{2}\right) x^{2}+\cdots+f\left(a_{n}\right) x^{n}$.

- Rings of matrices.

Let $\mathcal{M}_{n, n}(R)$ be the ring of all $n \times n$ matrices with entries from R. A homomorphism $\phi: \mathcal{M}_{n, n}(R) \rightarrow \mathcal{M}_{n, n}\left(R^{\prime}\right)$ is given by $\phi\left(\left(a_{i j}\right)_{1 \leq i, j \leq n}\right)=\left(f\left(a_{i j}\right)\right)_{1 \leq i, j \leq n}$.

